On the Local Triviality of the Restriction Map for Embeddings

by Elon L. Lima¹)

Let V, M be C^{∞} manifolds, V compact. A map $f: M \to M$ is said to have compact support if it agrees with the identity outside of a compact set. For $1 \le r \le \infty$, we consider the following spaces endowed with the C^r -topology: $C^r(V, M) = \text{all } C^{\infty}$ embeddings of V in M; $C^r(M) = \text{all } C^{\infty}$ maps, with compact support, of M into M; $C^r(M) = \text{all } C^{\infty}$ diffeomorphisms, with compact support, of M onto M. We remark that $C^r(M)$ is an open subset of $C^r(M)$.

R. Palais proved [1] that if V is a submanifold of W then the restriction map $j: \mathcal{E}^r(W, M) \to \mathcal{E}^r(V, M)$ is a locally trivial fibration. Previously, R. Thom had observed [2] that j has the covering homotopy property for polyhedra. The local triviality of j follows easily from the theorem below, (see [1], or Remark 2), at the end of this note), which was also proved by J. Cerf [3]. We present here a very simple proof of this theorem. For implications and applications, see the bibliography.

Theorem: Given $f \in \mathcal{E}^r(V, M)$, there is a neighborhood U of f and a continuous map $\xi: U \to \mathcal{D}^r(M)$ such that $g = \xi(g) \circ f$ for every $g \in U$.

Proof: We may assume that V is a submanifold of M, f = inclusion, and M is embedded in some euclidean space R^k . Let $\pi': T' \to M$ be a tubular neighborhood of M in R^k and $\pi: T \to V$ a tubular neighborhood, of radius $\varepsilon > 0$, of V in R^k , with $T \subset T'$. Denote by $\frac{1}{2}T$ the tubular neighborhood of V with radius $\varepsilon/2$. Since the shortest line from a point in R^k to V is a normal segment, any line segment of length $< \varepsilon/2$ which intersects $\frac{1}{2}T$ lies entirely within T. Choose a neighborhood U' of f in $\mathcal{C}^r(V, M)$ so small that $|g(y) - y| < \varepsilon/2$ for all $g \in U'$ and all $y \in V$. Let $\lambda: R \to [0, 1]$ be a C^∞ function with $\lambda(t) = 1$ for $|t| \le \varepsilon/4$ and $\lambda(t) = 0$ for $|t| \ge \varepsilon/2$. Define a map $\xi': U' \to \mathcal{C}^r(M)$ as follows. Given $g \in U'$, put $\xi'(g)(x) = x$, if $x \in M - T$, and $\xi'(g)(x) = \pi'\{x + \lambda(|x - \pi x|) \cdot [g(\pi x) - \pi x]\}$ if $x \in T$. One sees that ξ' is continuous and $\xi'(f)$ is the identity map of M, so $\xi'(f) \in \mathcal{D}^r(M)$. Since $\mathcal{D}^r(M)$ is open in $\mathcal{C}^r(M)$, a smaller neighborhood U of f can be chosen so that $\xi'(U) \subset \mathcal{D}^r(M)$. Put $\xi = \xi' \mid U$.

Remarks: 1) Let $\mathcal{D}_0^r(M) \subset \mathcal{D}^r(M)$ be the subset of C^{∞} diffeomorphisms, with compact support, that are diffeotopic to the identity. It is known that

¹⁾ The author holds a Guggenheim Fellowship. Work partially supported by NSF-G21514.

- $\mathcal{O}_0^r(M)$ is open in $\mathcal{O}^r(M)$. (This can be seen by a construction similar to, and simpler than, the above one.) So, if needed, U may be taken such that $\xi(U) \subset \mathcal{O}_0^r(M)$.
- 2) Given $f \in \mathcal{D}^r(V, M)$, take ξ and U as in the theorem, let $F = j^{-1}(f)$ and define a homeomorphism $\psi : F \times U \to j^{-1}(U)$ by $\psi(\overline{f}, g) = \xi(g) \circ \overline{f}$, for $\overline{f} \in F$, $g \in U$. This shows that j is a locally trivial fibration.
- 3) When $r = \infty$, $\mathcal{E}^{\infty}(V, M)$ and $\mathcal{D}^{\infty}(J)$ are C^{∞} (infinite dimensional) manifolds, locally homeomorphic with Fréchet spaces. The reason why ξ is continuous is that, in the last analysis, it is obtained as a series of compositions of the variable map g with fixed C^{∞} maps. Now, composition is a differentiable map in the C^{∞} topology. (See [4], pages 182, 183.) So, by the same token, ξ is a C^{∞} map when $r = \infty$. It follows from this and Remark 2) above that $j: \mathcal{E}^{\infty}(W, M) \to \mathcal{E}^{\infty}(V, M)$ would be a C^{∞} fibration, in the sense that the local trivializing maps $\psi: F \times U \to j^{-1}(U)$ are C^{∞} , provided one could show that F is a differentiable manifold.

Institute for Advanced Study, Princeton, N. J. and I.M.P.A., Rio de Janeiro, Brazil

BIBLIOGRAPHY

- [1] R. Palais, Local triviality of the restriction map for embeddings. Comment.Math.Helv. 31 (1960) pp. 305-312.
- [2] R. Thom, La classification des immersions (d'après Smale). Seminaire Bourbaki, 10e année: 1957/1958, exposé 157.
- [3] J. Cerf, Topologie de certains espaces de plongement. Bull. Soc. Math. France 89 (1961) pp. 227-380.
- [4] J. DIEUDONNÉ, Foundations of Modern Analysis. Academic Press, New York, 1960.

(Received April 29, 1963)