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The Jordan-Brouwer Separation Theorem for Smooth Hypersurfaces 

ELON L. LIMA 
LM.P.A., Estrada Dona Castorina 110, 22460 Rio de Janeiro, Brazil 

We give here a simple proof of the following: 

JORDAN-BROUWER SEPARATION THEOREM. Let M c Ritm be a connected, com- 
pact, orientable smooth hypersurface. Its complement Rit - M has two connected 
components, each of which has M as its point set boundary. 

A subset M c Rtm is called a smooth hypersurface when every point x E M 
belongs to an open set U, on which is defined a smooth function p: U -e Di with the 
following properties: i) gradp(x) 0; ii) p-(O) = M n U. A vector v el Rtm is 
said to be normal to M at x when v is a multiple of grad(p(x). The tangent space to 
M at x is the set T,M of all vectors in Rim that are perpendicular to grad(P(x). A 
map f: M -* Rin is called smooth when, for every x E M, f is the restriction to 
U ni M of a smooth map F: U -+ Rin, defined on an open set U containing x. The 
derivative of a smooth map f: M D is the linear map f '(x): Tx M DiR, 
obtained by restriction of F'(x): Di"m - Rn. (Recall that the matrix of F'(x) is the 
Jacobian matrix of F.) A diffeomorphism is a smooth map with a smooth inverse. 
The Inverse Mapping Theorem says that if f '(x): TxM -+ Di mr-I is a linear 
isomorphism then f, restricted to some neighborhood V of x in M, gives a 
diffeomorphism of V onto an open subset of R m-i. (For more details, see Thorpe 
[2].) 

A smooth hypersurface M c Ritm is said to be orientable when it admits a smooth 
field of normal unit vectors, i.e., when there exists a smooth map v: M -1R m such 
that Iv(x)I = 1 and v(x) is normal to M at x, for every x E M. 

The assumption of orientability in Theorem A is redundant: any compact 
hypersurface must be orientable. (See Samelson [1] for a short proof of the smooth 
case.) Its presence, however, makes possible an easy proof. In many cases (for 
instance, when M = Sm-') orientability is known a priori. 

By "smooth" we mean C?. The proof holds verbatim for C2 surfaces and, with a 
small technical modification (transverse, instead of normal fields) it would apply for 
Cl surfaces as well. 

Samelson's method of proof may also be used to get Theorem A, but we believe 
that our approach is more elementary. Instead of the Transversality Theorem and 
the classification of one-dimensional manifolds, we use the well-known fact that any 
smooth vector field X: Rm -- Dm, X(x) = (al(x),..., am(x)), which fulfills the 
integrability conditions 3aa/dxj = daj/lxi (i, j = 1 M..., i), is the gradient of a 
smooth function p: DR' - Di. 

Once and for all, we fix a smooth field of unit normal vectors v: M -+ Dim and 
define a smooth map h: M x D -+ RDm by h(x, t) = x + t v(x). For any given 
e > 0, we denote by he: M x (-E, E) -+ D im the restriction of h. 

The following standard result is included here for completeness. 
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LEMMA. Let M c Nm be a compact, orientable, smooth hypersurface. For some 
E> 09 he: M x (-e, e) iRm is a diffeomorphism onto an open subset of Rm. 

Proof For every x E M, the derivative h'(x,O): T,M X Ni -4 Rm is a linear 
isomorphism, since it sends each horizontal vector (w, 0) into w and each vertical 
vector (0, t) into t* v(x) (which is perpendicular to w). By the Inverse Mapping 
Theorem, we may find A > 0 and an open neighborhood VJ of x in M such that h 
maps V, X (- Ax) diffeomorphically onto an open neighborhood of x in R m. It 
remains only to show that, for some e > 0, he is injective. Assuming otherwise, we 
would find, for each n E - N, distinct pairs (Xn, Sn) (Yn, tn) in M X (- 1/n, 1/n) 
such that h(xn sO) = h(yn, tn). Since M x [-1, 1] is compact we may assume (by 
taking subsequences, if necessary) that Xn X Ex M, Yn -* Y E M, Sn - 0 and 

tn 0. Then 

x = h (x, O) = limh (xn, Sn) = limh (yn tn) = h (y, O) = y. 
n n 

Hence lim(x,1,9 S1) = lim(Yn tn) = (x,O). For all large values of n, (X,n Sn) and 
(y,, t,,) would belong to VJ- x (-8, Ax) and then h(Xn, SO) h(yn, tn). This 
contradiction proves the lemma. 

We denote the image of h e by V,(M) and call it a tubular neighborhood of M. We 
also write VeJM] = h(M X [-e, e]). 

Proof of the Theorem. We begin by showing that N m - M is disconnected. More 
precisely, we define a smooth function 9: Rm -, N such that M = 9-1(O) and 
grad (p(x) # 0 for every x E M. Then the open sets A = {x e Rtm; p(x) > O} and 
B = {x e R m; p(x) < O} are nonempty, disjoint, with RNm - M = A U B. The 
definition of cp is as follows. 

Let V2,(M) be a tubular neighborhood of M. Take a smooth function f: NiR R 
such that f (0) = 0, f' (t) > 0 when -e < t < E f (t) = e for t > e and f(t) = -e 
for t < 

f 

Any point in V2,(M) may be written uniquely as x + t * v(x), with x E M and 
I t I < 2E. Define a function g: V2,(M) - Ni by g(x + t * v(x)) = f(t). Then g is 
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smooth, M = g '(0), g(x + t * v(x)) = e for t E [e,2e) and g(x + t * v(x)) = -e 
for t e (-2e, -e]. Let X: Rm -- R' be the vector field which equals gradpg on 
V2e(M) and vanishes outside this tubular neighborhood. The set VJ'M] is compact, 
hence closed in i Im. X is smooth on each of the open sets V2e(M) and RItm - VJ/M] 
(in fact, identically zero on the latter). So, X is a smooth vector field in RItm, which 
clearly fulfills the integrability conditions. Hence we may find a smooth function p: 
N Im -> Ni such that grad(p = X. 

By adding a constant to p, if necessary, we may assume that (p(x) = g(x) for 
every x in V2e(M), since this is a connected open set on which,q and g have the 
same gradient. Moreover, p is constant on every connected component of Rm - 

V,(M), since its gradient vanishes there. Now, every such component meets V2e(M). 
[Given any y ? V2e(M), let p be a point in the closed set VJ[M] that minimizes 
distance from y. The line segment [y, p] lies in Rtm - V,(M) (hence in the 
component of y in this set) and meets V2e(M) at all points near p.] Then (p = + E 
outside V,(M) and M = p-1(O). If x E M then grad(p(x) = c * v(x), c E Ni, 
because the gradient is perpendicular to the level surface M. This gives 

d 
c = <grad (x), v(x)) = [g(x + t * v(x))]=o = f'() = 0, 

dt 

hence grad (p(x) # 0 at each point x E M. 
Next, we show that the open sets A, B, defined at the beginning of the proof, are 

connected. In fact, A contains the connected set P = h(M x (0, 2e)) = { x + t . 
v(x); x E M, 0 < t < 2e}. Moreover, every y E A is either in P or may be joined 
to a point p E P by a line segment [y, p] c A: just take p, (as before) as a point in 
the closed set h(M X [0, E]) that minimizes distance from y. A similar argument 
proves that B is connected. 

Finally, we prove that M is the common point set boundary of both connected 
components A, B of RNm - M. 

For any x e M, the point x + t v(x) belongs to A when 0 < t <8 and to B 
when -8 < t < 0. Let fr * S denote the point set boundary of a set S. This shows 
that x E fr * A n fr * B for all x E M. On the other hand, if x e fr * A then 
p(x) > 0 because x E A, but (p(x) < 0 because x 0 A, so p(x) = 0. Therefore 

fr * A c M, that is, fr * A = M. Similarly, fr * B = M and the proof is finished. 

REMARK. The same kind of argument applies when the hypersurface M, instead 
of compact, is assumed only to be a closed subset of JR m. One needs only to change 
the Lemma, where instead of a constant E > 0, a continuous positive function 
8: M -> R must be found with the following property: if x ly are in M then 
x + s * v(x)ly + t.v(y) for all s E (-E(x), E(x)) and t E (-8(y), 8(y)). One may 
even go one step further and replace Nitm by any simply-connected m-dimensional 
surface N containing the (m - l)-dimensional surface M as a closed subset. The 
same idea still applies, except that the construction of the tubular neighborhood 
VF( M) c N is more subtle. (Instead of straight line segments one may use geodesics.) 
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The Konigsberg Bridges -250 Years Later 

PETER A. FOWLER 

Department of Mathematics, California State University, Hayward, CA 94542 

The year 1736 is generally accepted as marking the beginning of graph theory. In 
that year Euler published his article [2] on the Konigsberg bridges problem and its 
generalizations, in which he demonstrated the necessity that every vertex have even 
degree. Remarkably, he dismissed the more difficult sufficiency argument as an 
"easy task... after a little thought." Not until 1873 was a sufficiency proof 
published [3]. Since that time there have been many proofs published. (See [1] for 
translations of [2] and [3] and for an interesting history of the problem.) The usual 
approach considers an Euler tour as a circuit to be traced out dynamically, ever 
enlarging until the graph is covered. In honor of the 250th anniversary of Euler's 
paper, we give a new proof in which we view the Euler tour as a static object in a 
graph and employ induction. 

THEOREM. A connected multigraph in which each vertex is of even degree has an 
Euler tour, that is, a circuit containing all the edges of the graph. 

Proof. We proceed by induction on the number of edges. If a graph has fewer 
than three vertices, the result is true by inspection, so consider a graph G with at 
least three vertices and n edges. Clearly, n is at least three. 

Assume that an Euler tour exists in any connected graph with all even degree 
vertices and fewer than n edges. Select any vertex v of G. Since G is connected and 
all vertices have even degree, there exist two distinct edges which join v to (not 
necessarily distinct) vertices u and w. Delete these two edges. If u = w, insert a loop 
at u; otherwise, join u to w by an edge. The resulting graph has all vertices of even 
degree and has n - 1 edges. If it is connected, it follows from the inductive 
hypothesis that it has an Euler tour. An Euler tour for G can be obtained by 
replacing u, uw, w by u, uv, v, vw, w. If the new graph is disconnected, then it has 
exactly two components one of which contains v and the other of which contains u 
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