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1988] NOTES 39

The Jordan-Brouwer Separation Theorem for Smooth Hypersurfaces

ErLonN L. LiMa
I.M.P.A., Estrada Dona Castorina 110, 22460 Rio de Janeiro, Brazil

We give here a simple proof of the following;:

JORDAN-BROUWER SEPARATION THEOREM. Let M C R™ be a connected, com-
pact, orientable smooth hypersurface. Its complement R™ — M has two connected
components, each of which has M as its point set boundary.

A subset M C R™ is called a smooth hypersurface when every point x € M
belongs to an open set U, on which is defined a smooth function ¢: U —» R with the
following properties: i) gradp(x) # 0; ii) ¢~ 1(0) = M N U. A vector v € R™ is
said to be normal to M at x when v is a multiple of grade(x). The tangent space to
M at x is the set T, M of all vectors in R™ that are perpendicular to grade(x). A
map f: M — R" is called smooth when, for every x € M, f is the restriction to
U N M of a smooth map F: U — R”", defined on an open set U containing x. The
derivative of a smooth map f: M — R” is the linear map f’(x): T,M - R",
obtained by restriction of F’(x): R” — R". (Recall that the matrix of F’(x) is the
Jacobian matrix of F.) A diffeomorphism is a smooth map with a smooth inverse.
The Inverse Mapping Theorem says that if f’(x): T.M - R™"! is a linear
isomorphism then f, restricted to some neighborhood V of x in M, gives a
diffeomorphism of ¥ onto an open subset of R™~!, (For more details, see Thorpe
(21)

A smooth hypersurface M C R"™ is said to be orientable when it admits a smooth
field of normal unit vectors, i.e., when there exists a smooth map v: M — R™ such
that |v(x)| = 1 and v(x) is normal to M at x, for every x € M.

The assumption of orientability in Theorem A is redundant: any compact
hypersurface must be orientable. (See Samelson [1] for a short proof of the smooth
case.) Its presence, however, makes possible an easy proof. In many cases (for
instance, when M = S™~1) orientability is known a priori.

By “smooth” we mean C®. The proof holds verbatim for C? surfaces and, with a
small technical modification (transverse, instead of normal fields) it would apply for
C! surfaces as well.

Samelson’s method of proof may also be used to get Theorem A, but we believe
that our approach is more elementary. Instead of the Transversality Theorem and
the classification of one-dimensional manifolds, we use the well-known fact that any
smooth vector field X: R” - R™, X(x) = (a;(x),..., a,(x)), which fulfills the
integrability conditions da,/dx; = da,/dx; (i, j=1,..., m), is the gradient of a
smooth function ¢: R” — R.

Once and for all, we fix a smooth field of unit normal vectors v: M — R™ and
define a smooth map A: M X R - R™ by h(x,t) = x + ¢t - v(x). For any given
¢ > 0, we denote by h,: M X (—¢, &) = R™ the restriction of A.

The following standard result is included here for completeness.
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LEMMA. Let M C R™ be a compact, orientable, smooth hypersurface. For some
e>0,h;: M X (—¢€) = R"™ is a diffeomorphism onto an open subset of R™.

Proof. For every x € M, the derivative h’(x,0): T.M X R —» R™ is a linear
isomorphism, since it sends each horizontal vector (w,0) into w and each vertical
vector (0, ¢t) into ¢ - v(x) (which is perpendicular to w). By the Inverse Mapping
Theorem, we may find 8, > 0 and an open neighborhood V, of x in M such that &
maps V, X (=8, d,) diffeomorphically onto an open neighborhood of x in R™. It
remains only to show that, for some ¢ > 0, A, is injective. Assuming otherwise, we
would find, for each n € N, distinct pairs (x,, s,),(y,, t,) in M X (=1/n,1/n)
such that h(x,, s,) = h(y,, t,). Since M X [—1,1] is compact we may assume (by
taking subsequences, if necessary) that x, > x €M, y, >y €M, s,— 0 and
t, = 0. Then

x = h(x,0) = limh(x,, s,) = limh(y,,t,) = h(y,0) = y.
n n

Hence lim(x,, s,) = lim(}y,, t,) = (x,0). For all large values of n, (x,,s,) and
(y,»t,) would belong to V, X (—§6,,8,) and then h(x,,s,) # h(y,,t,). This
contradiction proves the lemma.

We denote the image of 4, by V(M) and call it a tubular neighborhood of M. We
also write V,[M] = h(M X [—e¢, &]).

Proof of the Theorem. We begin by showing that R” — M is disconnected. More
precisely, we define a smooth function ¢: R™ — R such that M = ¢ '(0) and
grad p(x) # O for every x € M. Then the open sets 4 = {x € R™; ¢(x) > 0} and
B = {x € R™ ¢(x) <0} are nonempty, disjoint, with R” — M = A4 U B. The
definition of ¢ is as follows.

Let ¥, (M) be a tubular neighborhood of M. Take a smooth function f: R - R
such that f(0) =0, f’(¢) >0when —e <t <e¢ f(1) =cfort>eand f(2)= —¢
fort < —e

AN —_——
-

Any point in ¥,,(M) may be written uniquely as x + ¢ - v(x), with x € M and
|t| < 2e. Define a function g: ¥, (M) - R by g(x + ¢ - v(x)) = f(¢). Then g is
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smooth, M = g~ 1(0), g(x + t - v(x)) = ¢ for t € [¢,2¢) and g(x + t - v(x)) = —¢
for t € (—2¢, —¢]. Let X: R™ — R™ be the vector field which equals gradpg on
V,.(M) and vanishes outside this tubular neighborhood. The set V[ M] is compact,
hence closed in R™. X is smooth on each of the open sets V, (M) and R™ — V[ M]
(in fact, identically zero on the latter). So, X is a smooth vector field in R™, which
clearly fulfills the integrability conditions. Hence we may find a smooth function ¢:
R™ — R such that grade = X.

By adding a constant to ¢, if necessary, we may assume that ¢(x) = g(x) for
every x in V, (M), since this is a connected open set on which ¢ and g have the
same gradient. Moreover, ¢ is constant on every connected component of R™ —
V.(M), since its gradient vanishes there. Now, every such component meets V, (M).
[Given any y &€ V, (M), let p be a point in the closed set V[ M] that minimizes
distance from y. The line segment [y, p] lies in R™ — V(M) (hence in the
component of y in this set) and meets V, (M) at all points near p.] Then ¢ = +¢
outside V(M) and M = ¢ }(0). If x € M then grade(x) = c-v(x), ¢ €R,
because the gradient is perpendicular to the level surface M. This gives

¢ = Carad p(x), o(x)) = 180 + 1 0(N]ica = 170) =0,

hence grad - ¢(x) # 0 at each point x € M.

Next, we show that the open sets 4, B, defined at the beginning of the proof, are
connected. In fact, 4 contains the connected set P = hA(M X (0,2¢)) = {x + ¢ -
v(x); x € M, 0 <t <2¢e}. Moreover, every y € A4 is either in P or may be joined
to a point p € P by aline segment [y, p] C A: just take p, (as before) as a point in
the closed set h(M X [0, €]) that minimizes distance from y. A similar argument
proves that B is connected.

Finally, we prove that M is the common point set boundary of both connected
components 4, B of R™ — M.

For any x € M, the point x + ¢ - v(x) belongs to 4 when 0 < ¢ < ¢ and to B
when —e <t < 0. Let fr- S denote the point set boundary of a set S. This shows
that x €fr- AN fr-B for all x € M. On the other hand, if x € fr- 4 then
@(x) > 0 because x € 4, but ¢(x) < 0 because x & A4, so @(x) = 0. Therefore
fr-A C M, thatis, fr- A = M. Similarly, fr - B = M and the proof is finished.

REMARK. The same kind of argument applies when the hypersurface M, instead
of compact, is assumed only to be a closed subset of R™. One needs only to change
the Lemma, where instead of a constant ¢ > 0, a continuous positive function
&2 M — R must be found with the following property: if x|y are in M then
x4+ s-v(x)|y + t.o(y) for all s € (—e(x), &(x)) and ¢ € (—e(y), e(y)). One may
even go one step further and replace R™ by any simply-connected m-dimensional
surface N containing the (m — 1)-dimensional surface M as a closed subset. The
same idea still applies, except that the construction of the tubular neighborhood
V.(M) C N is more subtle. (Instead of straight line segments one may use geodesics.)
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The Konigsberg Bridges—250 Years Later

PETER A. FOWLER
Department of Mathematics, California State University, Hayward, CA 94542

The year 1736 is generally accepted as marking the beginning of graph theory. In
that year Euler published his article [2] on the Konigsberg bridges problem and its
generalizations, in which he demonstrated the necessity that every vertex have even
degree. Remarkably, he dismissed the more difficult sufficiency argument as an
“easy task... after a little thought” Not until 1873 was a sufficiency proof
published [3]. Since that time there have been many proofs published. (See [1] for
translations of [2] and [3] and for an interesting history of the problem.) The usual
approach considers an Euler tour as a circuit to be traced out dynamically, ever
enlarging until the graph is covered. In honor of the 250th anniversary of Euler’s
paper, we give a new proof in which we view the Euler tour as a static object in a
graph and employ induction.

THEOREM. A connected multigraph in which each vertex is of even degree has an
Euler tour, that is, a circuit containing all the edges of the graph.

Proof. We proceed by induction on the number of edges. If a graph has fewer
than three vertices, the result is true by inspection, so consider a graph G with at
least three vertices and n edges. Clearly, n is at least three.

Assume that an Euler tour exists in any connected graph with all even degree
vertices and fewer than n edges. Select any vertex v of G. Since G is connected and
all vertices have even degree, there exist two distinct edges which join v to (not
necessarily distinct) vertices u and w. Delete these two edges. If u = w, insert a loop
at u; otherwise, join u to w by an edge. The resulting graph has all vertices of even
degree and has n — 1 edges. If it is connected, it follows from the inductive
hypothesis that it has an Euler tour. An Euler tour for G can be obtained by
replacing u, uw, w by u, uv, v, vw, w. If the new graph is disconnected, then it has
exactly two components one of which contains v and the other of which contains u
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