Vol. XX, 1969

Isometric immersions with semi-definite second quadratic forms

 $\mathbf{B}\mathbf{y}$

MANFREDO P. DOCARMO*) and ELON LIMA

Let $x: M \to \mathbb{R}^{n+N}$ be an isometric immersion of a compact, connected oriented n-dimensional riemannian manifold M in the euclidean space \mathbb{R}^{n+N} . We shall adopt the notations of Chern-Lashof [1], and assume some familiarity with this paper. B_r is the bundle of unit normal vectors of x(M), i.e., a point of B_r is a pair (p, r(p)), where r(p) is a unit normal vector to r(m) at r(p). If r(p) is the unit sphere of r(p), we define a map r(p) is r(p) is r(p) if r(p). If r(p) is the volume element of r(p) and r(p) is the volume element of r(p) is the volume element of r(p) is a function

 $G(p, \nu(p)) = G(p, \nu)$

on B_{ν} by

$$v*d\Sigma = G(p, v)dB$$
.

Finally, the scalar product in \mathbb{R}^{n+N} will be denoted by \langle , \rangle and, for each point $(p, \nu(p)) \in B_{\nu}$, we define a quadratic form $\langle d^2x(p), \nu \rangle$ in the tangent space of M at p, called the second quadratic form of the immersion x in the normal direction ν . We will prove the following

Theorem. Assume all second quadratic forms of the immersion $x: M \to \mathbb{R}^{n+N}$ to be semi-definite, and definite at one point $(p, v_0(p)) \in B_r$. Then x(M) belongs to a linear subvariety \mathbb{R}^{n+1} of \mathbb{R}^{n+N} and $x: M \to \mathbb{R}^{n+1}$ imbeds M as the boundary of a convex body; in particular M is homeomorphic to a sphere.

Remark. Because the quadratic forms of the immersion x are assumed only to be semi-definite (and not definite), no numerical informations on the total curvature are immediately available from the hypothesis.

Lemma 1. With the hypothesis of the theorem, let $v \in S_0^{n+N-1}$, $v = \tilde{v}(q, v(q))$, $q \in M$, be a regular value of \tilde{v} . Then the "height function" $h: M \to \mathbf{R}$ given by $h(p) = \langle x(p), v \rangle$, $p \in M$, has non-degenerate critical points, which are either maxima or minima.

Proof. If $p \in M$ is a critical point of h, then

$$dh(p) = \langle dx(p), v \rangle = 0$$
.

It follows that ν is a normal vector at x(p) and the hessian

$$d^{2}h\left(p\right) =\left\langle d^{2}x\left(p\right) ,v\right\rangle$$

^{*)} Guggenheim fellow; partially supported by N.S.F. GP-6974 and C.N.Pq.

is the second quadratic form at $(p, \nu(p))$. Because ν is a regular value of $\tilde{\nu}$, and $G(p, \nu)$ is, except for sign, the determinant of the above quadratic form, we conclude that p is a non-degenerate critical point. Moreover, since all eigenvalues of $d^2h(p)$ have the same sign, p is either a maximum or a minimum.

Lemma 2. Let M be a compact manifold and $h: M \to \mathbf{R}$ a differentiable function on M with non-degenerate critical points which are either maxima or minima. Then h has exactly two critical points.

Proof. By compactness, there is one critical point, say $q \in M$; let us assume for definiteness that q is a minimum. Let $\varphi(t)$ be a trajectory of grad h issuing from q, i.e., $\varphi(0)$ is close to q and $\lim_{t\to -\infty} \varphi(t) = q$. By compactness, $\varphi(t)$ is defined for all t>0.

Since h is bounded on M and

$$h(\varphi(t)) - h(\varphi(0)) = \int\limits_0^t \frac{d}{dt} h(\varphi(t)) \, dt = \int\limits_0^t \|\operatorname{grad} h(\varphi(t))\|^2 \,,$$

we have that $\| \operatorname{grad} h \|$ is not bounded away from zero on $\varphi(t)$. Therefore, there is a critical point in the (compact) closure of the trajectory $\varphi(t)$. It follows that there exists the limit $\lim_{t\to +\infty} \varphi(t) = p \in M$, and that p is a critical point of h. We shall say that $\varphi(t)$ goes into p.

Now, let S be a level surface of h sufficiently close to q. Let $A \subset S$ the set of points in S which are intersections of trajectories of grad h, issuing from q and going into p. By continuity and the fact that p and q are not saddles, A is an open set in S. On the other hand, a trajectory which issues from q and intersects S in a point belonging to the complement of A, goes into a critical point, say r. By the above argument, the complement of A is seen to be open in S. Because S is connected, A = S, and all the trajectories issuing from q go into p. By a similar argument, these trajectories cover an open and closed subset of M, hence the entire manifold M.

Therefore q and p are the only critical points of h in M, and the proof is finished.

Proof of the theorem. We first show that x(M) is contained in a hyperplane of \mathbb{R}^{n+N} .

Assume that this is not true. By hypothesis, there exists a point $(p, v_0(p)) \in B_v$ such that $G(p, v_0) \neq 0$. Then by an argument of [1], lemma 1, it is possible to find a point $(p, v) \in B_v$ and points $x(q_1), x(q_2), q_1, q_2 \in M$, such that $G(p, v) \neq 0$ and $x(q_1), x(q_2)$ lie on different sides of the tangent hyperplane at x(p) normal to v. Since $G(p, v) \neq 0$, the mapping \tilde{v} is one-to-one in a neighborhood W of $(p, v) \in B_v$. Using Sard's theorem, we can find $(q', v') \in W$ such that v' is a regular value of \tilde{v} and $x(q_1), x(q_2)$ still lie on different sides of the tangent hyperplane at x(q') normal to v'. It follows that the height function $\langle x, v' \rangle$ has at least three distinct critical points. By lemmas 1 and 2, this is a contradiction, and proves our assertion.

It is clear now that $x: M \to \mathbb{R}^{n+N-1}$ satisfies the hypothesis of the theorem, and, by induction, we conclude that x(M) is contained in a linear subvariety of \mathbb{R}^{n+1} .

To prove that the immersion $x: M \to \mathbb{R}^{n+1}$ imbeds M as the boundary of a convex body, consider the normal map $v: M \to S_0^n$. By lemmas 1 and 2, the inverse

image of a regular element contains a unique element. Since M is compact and oriented, the degree of ν is ± 1 . We now apply Theorem 4 of [1] to obtain the desired conclusion.

Remark. The above argument gives a new and simple proof of the fact that if $x \colon M \to \mathbb{R}^{n+1}$ is an isometric immersion of a compact riemannian manifold M with non-negative sectional curvatures, then $x(M) \subset \mathbb{R}^{n+1}$ is the boundary of a convex body and, in particular, M is homeomorphic to a sphere. This has been proved by Chern-Lashof [2], for n=2. The general case follows from papers by Heijenorm [3] and Sacksteder [4] but no direct proof seems to be available.

References

- [1] S. S. Chern and R. K. Lashof, On the total curvature of immersed manifolds. Amer. J. Math. 79, 306-318 (1957).
- [2] S. S. CHERN and R. K. LASHOF, On the total curvature of immersed manifolds II. Michigan Math. J. 5, 5-12 (1958).
- [3] S. VAN HEIJENOORT, On locally convex manifolds. Comm. Pure Appl. Math. 5, 223-242 (1952).
- [4] R. SACKSTEDER, On hypersurfaces with non-negative sectional curvatures. Amer. J. Math. 82, 609-630 (1960).

Eingegangen am 25.4.1968

Anschrift der Autoren:
Manfredo P. do Carmo
Department of Mathematics
University of California
Berkeley, California 94720, USA

Elon Lima Instituto de Matematica Pura e Aplicada Rio de Janeiro, Brazil