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Isometric immersions with semi-definite second quadratic forms

By

MaxnrFrEDO P. DoCarMO *) and Eron Lima

Let x: M — R?**¥ be an isometric immersion of a compact, connected oriented
-dimensional riemannian manifold M in the euclidean space R"*¥. We shall adopt
the notations of CHERN-LasHOF [1], and assume some familiarity with this paper.
B, is the bundle of unit normal vectors of x (M), i.e., a point of By is a pair (p, »(p)),
Where 3 (p) is a unit normal vector to x (M) at x(p). If S2*¥~1 is the unit sphere of
R*¥ we define a map ¥: By — SET¥ 1 by 3(p, v(p)) = v(p). If dX'is the volume
element of 8z+N-1 and dB is the volume element of By, we define a function

d(p,v(p)) = G(p,v)
on R, by

vdE = G(p,v)dB.
Fjna,]ly, the scalar product in R**¥ will be denoted by ¢, » and, for each point
(p, v(p)) € By, we define a quadratic form {d2x(p),v)> in the tangent space of M

2t p, called the second quadratic form of the immersion @ in the normal direction .
We will prove the following

Theorem. Assume all second quadratic forms of the immersion x: M — R+ to
b_e semi-definite, and definite at one point (p, vo(p)) € By. Then x(M) belongs to a
lineayr subvariety R7+1 of R"+¥ and x: M — Rntl imbeds M as the boundary of a
Convex: body, in particular M is homeomorphic to a sphere.

Remark. Because the quadratic forms of the immersion z are assumed only to
€ semi-definite (and not definite), no numerical informations on the total curvature
are immediately available from the hypothesis.

Lemma 1. With the hypothesis of the theorem, let v € 83t =Y, v = v(q, v(¢)), g€ M,
be a regular value of 3. Then the “height function” h: M — R given by h (p) = (x(p), »,
Pe M, has non-degenerate critical points, which are either maxima or minima.

Proof. If p e M is a critical point of &, then
dh(p) = <dx(p), »> = 0.
1t follows that » is a normal vector at z(p) and the hessian

2 = ¢d2
— d2h (p) = (dPx(p), v>
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is the second quadratic form at (p, » (p)). Because » is a regular value of v, and G (p, v)
is, except for sign, the determinant of the above quadratic form, we conclude that
is a non-degenerate critical point. Moreover, since all eigenvalues of d2k(p) have the
same sign, p is either a maximum or a minimum.

Lemma 2, Let M be @ compact manifold and h: M — R a differentiable function
on M with non-degenerale critical points which are either maxima or minima. Then b
has exactly two critical points,

Proof. By compactness, there is one critical point, say g € M; let us assume for
definiteness that ¢ is a minimum. Let ¢ (#) be a trajectory of grad % issuing from
g, i.e., ¢(0) is close to ¢ and lim ¢ (f) = ¢q. By compactness, @(t) is defined for all
t>0. i=—o

Since 4 is bounded on M and

¢ t
h(p®) — @) = | Th(p®)dt = [ |grad hg ) |2,
0 0
we have that |grad %] is not bounded away from zero on ¢ (t). Therefore, there is
a critical point in the (compact) closure of the trajectory ¢(t). It follows that there
exists the limit lim ¢(¢) = p € M, and that p is a critical point of 2. We shall say
1> | oo
that ¢ (t) goes into p.

Now, let § be a level surface of & sufficiently close to g. Let A c 8 the set of points
in § which are intersections of trajectories of grad £, issuing from ¢ and going into p.
By continuity and the fact that p and ¢ are not saddles, 4 is an open set in S. On
the other hand, a trajectory which issues from ¢ and intersects S in a point belonging
to the complement of 4, goes into a critical point, say r. By the above argument,
the complement of A is seen to be open in 8. Because S is connected, 4 = 8, and
all the trajectories issuing from ¢ go into p. By a similar argument, these trajectories
cover an open and closed subset of M, hence the entire manifold M.

Therefore ¢ and p are the only critical points of 4 in M, and the proof is finished.

Proof of the theorem. We first show that (M) is contained in a hyperplane
of Rr+¥,

Assume that this is not true. By hypothesis, there exists a point (p, vo(p)) € By
such that G(p, o) + 0. Then by an argument of [1], lemma 1, it is possible to find
a point (p, v) € B, and points z(q1), ©(g2), q1, g2 € M, such that G(p, v)+ 0 and
x(q1), x(gs) lie on different sides of the tangent hyperplane at z{p) normal to ».
Since G (p, v) + 0, the mapping » is one-to-one in a neighborhood W of (p, ») € By
Using SARD’s theorem, we can find (¢’, +') € W such that 4’ is a regular value of ¥
and x(q1), x(ge) still lie on different sides of the tangent hyperplane at x(¢') normal
to »’. It follows that the height function (x, »’> has at least three distinct critical
points. By lemmas 1 and 2, this is a contradiction, and proves our assertion.

It is clear now that z: M — R**¥~1 gatisfies the hypothesis of the theorem,
and, by induction, we conclude that x (M) is contained in a linear subvariety of R#+1.

To prove that the immersion 2;: M — R»+1 imbeds M as the boundary of a con-
vex body, consider the normal map »: M — 83. By lemmas 1 and 2, the inverse
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image of a regular element contains a unique element. Since M is compact and
Oriented, the degree of v is -+ 1. We now apply Theorem 4 of [1] to obtain the desired
conclusion.

Remark. The above argument gives a new and simple proof of the fact that if
Z: M — Rn+l ig an isometric immersion of a compact riemannian manifold M with
Non-negative sectional curvatures, then x (M) c R#+1 is the boundary of a convex
body and, in particular, M is homeomorphic to a sphere. This has been proved by
CuErN-Lasnor [2], for n = 2. The general case follows from papers by HEIJENOORT
(3] and SacksTEDER [4] but no direct proof seems to be available.
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