A TEORIA DOS ESPECTROS E A TOPOLOGIA ALGEBRICA

ELÓN L. LIMA (Instituto de matemática pura e aplicada de Río de Janeiro, Brasil)

A nação de espectro em teoria da homotopia, foi introducida pelo autor, a fin de obter um sistema completo de invariantes do tipo de homotopia estável de um poliedro ("Stable Postnikov Invariants and their Duals", Summa Brasiliensis Mathematicae, vol. 4, Fasc. 5 (em impressão)). Tal conceito foi posteriormente usado por E. Spanier (Annals of Math. Vol. 70, pag. 338) e G. Whitehead (Proc. Nat. Acad. Sci. Vol. 46, pag. 554). Um espectro e uma coleção $\mathcal{G} = \{X_i, \varphi_i\}$ onde X_0, X_1, \ldots são CW-complexos finitos e cada $\varphi_i: SK_i \longrightarrow X_{i+1}$ é uma S-aplicação (no sentido de E. Spanier e J. H. C. Whitehead) e qual é uma equivalência entre a suspensão SK_i en espaço X_{i+1} em dimensão $\leq 2i+2$. En outras palavras, cada X_i aproxima-se mais e mais da i-ésima suspensão de X_0 . No trabalho acima citado, o autor desenvolve uma grande parte da teoria clássica da homotopia para uma categoria cujos elementos são espectros. O objetivo da presente nota é demonstrar que dois dos teoremas clássicos mais importantes, a saber, o teorema de Hurewicz e a classificação de aplicações de um espaço qualquer num $K(\pi, n)$, são válidos numa categoria mais geral de espectros, para os quais as aplicações $\varphi_i: SX_i \longrightarrow X_{i+1}$ não estão sujeitas a nenhuma restrição. Espectros assim irrestritos foram considerados por G. Whitehead (loc. cit.).