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Commuting Vector Fields on S3 

By ELON L. LIMA* 

In this paper an answer is given to the question, first posed to me by 
S. Smale, of whether the sphere S3 admits a pair of commuting vector fields 
that are linearly independent at each point. The answer is no. The same 
problem was considered independently by J. Milnor who, in the list of problems 
of the Seattle Topology Conference (Summer 1963), defined the rank of a 
manifold M as the maximal number of commuting vector fields on M that are 
linearly independent at each point and asked, among other things, what is the 
rank of S3. 

In Milnor's terminology, our main result (stated and proved in ? 4) is that 
every compact 3-manifold with finite fundamental group has rank one. 

I am grateful to S. Smale and A. Haefliger for stimulating conversations 
on this subject, and to J. Stallings for useful information. 

1. Preliminaries 

We shall adopt the C- point of view, so that the word differentiable is to 
mean infinitely differentiable. In this section we-review the basic facts to be 
used later. 

A differentiable action of a Lie group G on a differentiable manifold M 
is a differentiable map q: G x M-> M such that 'p(gh, x) = q(g, q(h, x)) and 
q(e, x) = x for any g, h e G, x e M, where e denotes the neutral element of G. 
For a given g e G, we write q-: M-> M to denote the map defined by q,(x) = 
q(g, x). Each Ad is a diffeomorphism, whose inverse is q'-i. The action g 

induces, in a well-known way, a Lie algebra homomorphism g-%: B DX(M) of 
the Lie algebra of G into the space of all differentiable vector fields on M, called 
the Lie homomorphism of q. Conversely, when M is compact and G is simply- 
connected, any Lie algebra homomorphism h: 9 DX(M) is of the form h = A 
for some action, q-: G x M a M [3, p. 82]. We shall use this fact mainly when 
G Ra, and then, to give q-* is the same as giving n differentiable vector fields 
Xi, * * *, X. on M such that [Xi, XJ]= 0 i, j = 1, ... , n. In this case, we say 
that the given vector fields commute. An action of the additive group of the 
reals is called a flow, so that a differentiable flow on a compact manifold M is 
equivalent to a differentiable vector field on M. Given 2 commuting vector 
fields X, Y on a compact manifold M, the relation between the flows 
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COMMUTING VECTOR FIELDS ON SI 71 

a 7: R x Mu M, generated respectively by X and Y, and the action 
9: RK x M- Mdetermined by them is that, for any r = (s, t) e R, x E M, one 
has Pr(x) = M8Qt(x)) = Yqt(MX)). 

Given an action A: G x M-UM, the orbit of a point x e M is the set p(G x x)= 
{9(g, x); g e G}. The isotropy group of x is the set Gx = {g E G; q(g, x) = x}. 
Gx is a closed subgroup of G. Given x e M, the map g pg(x) of G onto the 
orbit of x induces, by passage to the quotient, a one to one continuous map 
G/GX - M of the homogeneous space G/Gx onto the orbit of x. When 9 is 
differentiable, such map is regular (i.e., has an infective derivative at each 
point) and, of course, when G/Gx is compact, it is a diffeomorphism of G/Gx onto 
the orbit of x. 

We are interested in the cases G = R and G = R'. Given a differentiable 
flow #: R x M - M, the isotropy group of a point x e M may be {O}, a discrete 
subgroup with a generator s, > 0, or the whole real line. In the first case, the 
orbit of x is a non-compact one to one regular image of R. In the second case, 
the orbit of x is diffeomorphic to a circle and we say it is a periodic orbit, of 
period s,, meaning that 28(x) = x if and only if s = n * s,, n integer. In the last 
case, x is a fixed point of the flow #, that is, &8(x) = x for every s. If X is the 
vector field associated to the flow I, we refer to the orbits of the flow e as X- 
orbits and a fixed point of e is a point x e M such that X(x)- 0, that is, a 
singularity of X. 

When G = R', the isotropy group Gx of a point x e M under a differentiable 
action A: R2 x M-y M may be one of the following. It may be the whole R', 
and then x is a fixed point of p: its orbit reduces to {x}. Next, suppose that 
dim Gx = 1. Then Gx may either be a line through the origin of RK, in which 
case R2/Gx R and the orbit of x is a regular one to one image of R, or else 
Gx consists of a sequence of parallel lines L + l . v, n = 0, ?] 1 +2, * * * where 
L is a line through the origin of RK and v e R is a vector not contained in L. 
In this case R2/Gx circle, so the orbit of x is a simple closed curve. Finally, 
the isotropy group Gx may have dimension 0, that is, it may be a discrete sub- 
group of the plane. This is the case we shall consider mostly. Here there are 3 
possibilities. The first one is that Gx = {0}. Then the orbit of x is a regular one 
to one image of the plane RK. The second is that Gx = {nv; n = 0, +1, ?2, * * .. 

is a cyclic group with one non-zero generator v e R. Then RK/Gx is an infinite 
cylinder of which the orbit of x is a one to one continuous image. The last 
possibility is that Gx be a free abelian group on 2 generators: Gx = {mu + ny; 

m, n = 0 ? 1, + 2, * . } where u = (a, b) and v = (c, d) are linearly independent 
vectors in the plane RK. Then R2/Gx is a torus and the orbit of x is diffeomorphic 
to this torus. Again we remark that the orbit of x is compact if and only if 
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72 ELON L. LIMA 

R2/GX is compact. Let X, Y be commuting vector fields corresponding to the 
action A: R2 x M - M. A point x e M is fixed under g if and only if X(x) = 
Y(x) = 0. The orbit of x under p is 1-dimensional if and only if X and Y 
are linearly dependent (but not simultaneously zero) at x. The orbit of x is 
2-dimensional if and only if X(x) and Y(x) are linearly independent. 

Given the action A: G x Ma M, if two points x, y e M belong to the same 
orbit of A, then the isotropy groups Gx and G, are conjugate subgroups of G. 
So, when G is abelian, 2 points in the same orbit have the same isotropy groups. 
A set Xc M is said to be invariant under g if, for any x e X and g e G, 
pg(x) e X. A subset X c M is said to be a minimal set under q' if it is compact, 
invariant, non-empty, and contains no proper subset with these 3 properties. 
By Zorn's lemma, any non-empty invariant subset contains a minimal set. 
Given a minimal set pA c M, the orbit of any point x e pa is dense in jte, and from 
this it follows readily that any 2 points of pa have conjugate isotropy groups. 
When G is abelian, the isotropy group of all points in a given minimal set is 
the same. 

The o-limit set of a point x e M under a flow 0: R x M- AM is the set 
&+,O(x) of all points y = limn E8,(x), where s$, ) Co. When M is compact, the 
co-limit set _+,(x) of each point x e M is a non-empty, connected, invariant, 
compact subset of M. 

To conclude this introductory section, we prove a topological lemma which 
is well known, but we need every part of its statement. 

Let V= VI1 be a closed, connected (n - 1)-manifold, topologically 
embedded in a compact, connected n-manifold M = M. The homology group 
Hni( V; Z2) has only one non-zero element. Denote by i: V c M the inclusion 
map. When i,: Hni-(V; Z2) Hn,-i(M; Z2) is the zero homomorphism, we say 
that V bounds in M. 

From now on we omit mention of the coefficient groups in homology, and 
cohomology, assuming them to be always Z2. 

LEMMA 1. If Vn-l bounds in MB, then 
(a) M - V has 2 connected components; 
(b) V is the complete point-set boundary of each component of M -V; 
(c) Given a coordinate system x: She Rn such that x(&?) is a ball around 

the origin and x(&? n V) = {(x1, *, Xn) e x(&?); Xn = O}, let a, b e &? be points 
such that x(a) and x(b) lie in different sides of the hyperplane Xn = 0. Then 
a and b belong to distinct components of M - V. 

PROOF. We prove (c) first. Replacing, if necessary, &2 by a smaller domain, 
we may assume that x is also defined in the boundary of &?. Clearly 72 - V 
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COMMUTING VECTOR FIELDS ON S3 73 

Fig. 1 

has 2 connected components A, B, with a e A, b e B. Suppose, by contradiction, 
that a and b could be joined by an arc X, c M - V. Of course, X, is not 
contained in &?. Let a' be the last point of X, that lies in the boundary of A. 
Replace the part of X, that goes from a to a' by an arc aa' such that x(aa') = 
line segment joining x(a) to x(a'). Do the same to b. Let X, be an arc connecting 
a to b in &? such that x(X) = line segment from x(a) to x(b). Then aa', the 
untouched middle part of -X, b'b and X, form a closed curve X in M, intersecting 
V transversally and only at one point c. Hence the intersection number (mod 2) 
of Vand X is Vim = 1. On the other hand, V bounds in M, so V# X= O. 
This contradiction proves (c). 

The proofs of (a) and (b) may also be given by geometric arguments, 
provided that we assume V nicely embedded in M (as in the case we shall 
encounter). But it is neater-if less intuitive-to use the Lefschetz duality 
theorem, according to which HO(M - V) H"(M, V). In order to compute 
H"(M, V), we consider the cohomology exact sequence: 

H n-1 
(M) H n-f (V) ) Hn(M, V) Hn(M) Hn( V). 

The first homomorphism is zero because it is the transpose of i,. The last group 
is zero because dim V = n - 1. The second and fourth groups are isomorphic 
to Z2. Hence Hn(M, V) Z2 + Z2, So H(M- V) Z2 + Z2, and M- V has 
2 connected components. This proves (a). 

As to (b), it is clear that the point-set boundary of each component of 
M - V is contained in V. To prove the converse inclusion, it suffices to show 
that, for any open ball B c V, the subset V' = V - B does not disconnect M. 
Now V' is compact and Hn-l( V') = 0. Using duality and exact sequence as 
before, we see that HO(M - V') Hn(M, V') Z2, So M - V' is connected. 

2. The main argument 

THEOREM 1. Let X and Y be commuting vector fields on a compact 
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74 ELON L. LIMA 

simply-connected 3-manifold M. Assume that X has a closed orbit and no 
singularities on M. Then the action of R2 on M determined by X and Y has 
a compact orbit. (That is, a circle or a torus.) 

PROOF. Denote by A, r2: R x M-a M the flows generated by X and Y 
respectively, and let A: R2 x M-a M be the corresponding action of R2 on M 
so that, for r = (s, t) e R2 and x e M, wp(x) = ti7t(x) = itt(x). Consider a point 
xe E M whose a-orbit is closed, say of period so > 0, so E80(x) = x0, but E8(xo) + 
x0 for 0 < s < s0. Call K the closure of the q-orbit of xo. By continuity, E8O(x) 
x for every x e K. Since X has no singularities, the &-orbit of every x e K is 
then closed, with a period of the form so/n, n > 0 an integer. Clearly K is a 
compact, 9-invariant, non-empty subset of M, so we may choose a minimal set 
IA c K for the action A. 

The X-orbit of every point x e j is closed, with the same period s, = so/n,. 
In fact, by the minimality of pA, given any two points x, y e pA, each of them 
belongs to the closure of the 9-orbit of the other. Suppose that, for some s E R, 
Es(x) = x. We may write y = lime pWrn(X), r- co in R2. Hence 

Eg)=lim Eswrn (X) = lim (P, S~X) = lim P'P~) = y 

Interchanging the roles of x and y, we see that Es(x) = x if, and only if, Es(y) = Y. 
Therefore, the X-orbits of x and y have the same period s,. 

Pick a point xl e IA. If X(x,) and Y(x,) are colinear, then the q-orbit of xl 
is the same as its X-orbit, so it is a circle, and the theorem is proved. We may, 
therefore, assume that X(x1) and Y(x1) are linearly independent. Let y, denote 
the (closed) orbit of x1 under X. For each x e "1, the vectors X(x) and Y(x) are 
linearly independent. The 9-orbit of x1 is either a one to one regular image of 
a cylinder or it is a torus. We exclude the latter case, because it is what we 
want to prove. 

Let x be an arbitrary point of -t1. Given any neighborhood U of v1 in M, 
there are arbitrarily large positive values of t such that the point iCt(x), in the 
Y-orbit of x, returns to U. This means that the (0-limit set Y),+(x) of the Y-orbit 
of x intersects '71. In order to see this, let L -(R x 72,+?(x)) be the union of 
all the X-orbits of points in i,+OO(x). The X-orbit of every point of i,+O(x) has 
period si because 72+,?(x) c IA. So L = &([0, s1] x iyo(x)), hence L is compact. 
Since L is evidently non-empty, invariant, and contained in te, we must have 
L = A. In particular, x E L. This means X = Es(y) for some s e R and some 
y e 7?+?(x). Then y = p_(x), so y e ,1 and consequently y e -/1 n 7+??(x), as we 
wanted to show. 

Let S be an open 2-dimensional cylindrical band, having -/1 as its equator 
and transversal to all Y-orbits that intersect it. S will be constructed as a 
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COMMUTING VECTOR FIELDS ON S3 75 

narrow ruled surface spanned by geodesic segments normal to the cylindrical 
q-orbit along -1 (in some riemannian metric of M). Replacing, if necessary, 
S by a smaller band relatively compact in it, we may assume that there exists 
s > 0 such that the segments of Y-orbit Ix = {t7(x); I t I < e}, of length 2e and 
origin x e S, form a (trivial) fibration, with base S, of the open set V = U Ix, 
x e S. Denote by 7r: V S the projection map that assigns to each 7t(x) e V 
its origin x e S. 

We choose S so narrow that the geodesic segments that generate it are 
transversal not only to the p-orbit containing yi, but also to the P-orbits of all 
points x e S. Notice that, since the 9-orbit of every point of , is dense in fA, 
there are points x e S n , arbitrarily close to -1, so close that the X-orbit of x lies 
entirely in V, hence it may be projected by w into S. By the previous remark, 
such projection is a simple closed curve in S, transversal to the generatrices 
of S, hence homotopic to '71 (and disjoint from it) in S. From this it follows 
that we may narrow S down further, in such a way that its absolute boundary 
S - S = 8S consists of 2 of those curves, that is, two circles each of which lies 
entirely in one cyclindrical p-orbit in pt, but not in the 9-orbit containing ,1. 
Assume, from now on, that S has this property. 

Define a real-valued function z: -i, - R by letting r(x) = smallest positive 
number z such that iT(x) e S. Clearly z is well defined, since for t # t' and 
7t(x), i7t,(x) e S one must have I t-t' i > 2e. The preceding remark shows that, 
as x varies in 71, 2(x)(x) keeps away from &S. This implies that z- is a continuous 
function on 7,. Indeed, a simple application of the implicit function theorem 
will show that z- is differentiable. 

The map x -' r(x)(x) defines a diffeomorphism of 7, onto a simple closed 

curve 72 C S. Unlike '1, 72 may or may not be an orbit of X. In any case 72 
cuts each generatrix of S transversally hence exactly once, so '72 is homotopic 
to .7 in S. Consequently, if we show that 71 n /2 = 0, there will be a ring A 
in S, bounded by Y, and 72. This is proved next. 

We have assumed, by contradiction, that the p-orbit containing '1 is not 
a torus, so it is a continuous one to one image of a cylinder. Under these 
circumstances, 71 and 72 must be disjoint, because the existence of a common 
point y e 7, n 72 would give y = 'TJx) for some x e 71 and z- z(x). On the other 
hand, y =8(x), s e R. Hence 

x = t-8.(x) = 9r(x), r = (-s, z) . 

Since z- 0, the vectors (s1, 0) and (-s, z-) are linearly independent. They both 
belong to the isotropy group of x under the action 9, so this group is free on 
2 generators, and the 9-orbit containing 71is a torus, contrary to the assumption. 
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76 ELON L. LIMA 

Notice that we are assuming actually that no pp-orbit in , is a torus, so if x e pe 
and t # t', one must have rt(x) # 08T (x) no matter which s e R is chosen. 

Consider now the compact cylinder B = {'t(x); x e y1, 0 _ t ? z-(x)}. To- 
gether with the ring A c S, bounded by v, and Y2, B forms a topological torus 
T = A U B, embedded in the manifold M. Now we apply Lemma 1. Since M 
is simply-connected, H2(M; Z2) = 0, by Poincare duality. Hence T bounds in 
M. Lemma 1 then provides us with the following: M - T = C1 U C2 is the 
disjoint union of 2 connected components, each of which has T as its point-set 
boundary. Moreover, if s > 0 is the number introduced in the definition of S, 

Of 0 
and A = A - B (the absolute interior of A), then the set {'t(x); x e A, 0 < t ? s} 
lies entirely in one component, say C1, whereas the set {'t(x); x e Ay s < t < O} 
is contained in C2. 

We need, however, a little more than this, namely: for any y e y1, and 
-s < t < O rt(y) e C2. (Similarly, if z e y2 and 0 < t _ e, then Y(t(Z) e C1.) To 
prove this, let u x(u), 0 _ u _ 1, be a path in A, going from a point x(O) e A 
to the given y, without touching any other point of B besides y. Then ua 
mt(x(u)) is a path in M, starting at rt(x(O)) e C1 and never touching T for u < 1. 
So, mt(y) = rt(x(l)) either belongs to T (that is, to B) or to C1. But it is clear 
that rt(y) X B, so ht(y) e C2, 

Fig. 2 

Let y =jy1), so y is a closed orbit of X, entirely contained in C2. Choose 
a point w e v. As we have seen earlier, there are arbitrarily large positive 
values of t for which rt(w) returns to any pre-assigned neighborhood of 'v. In 
particular, Yt(w) must return to C2 for some values of t strictly greater than 
z-(w) + s. Now, for z-(w) + s < t < z-(w) + 2s, rt(w) e C1. Therefore, rt(w) 

may only leave C1 and enter C2 for values t > z(w) + 2s. But how? First of 
all, rt(w) cannot cross A from C1 to C2 because all the stream lines of the flow 
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COMMUTING VECTOR FIELDS ON S3 77 

r, in A lead to C1. Secondly, r7t(w) cannot touch B for values t > r(w) + 2e 
because this would give 7t(w) =8rt (w) with t' ? r(x) + e, hence t # t'. This, 
however, contradicts a previous observation and it is the final contradiction 
that proves the theorem. 

3. Fields of 2-frames in 3-manifolds 

Let V2(R3) denote the Stiefel manifold of orthonormal 2-framesineuclidean 
space R3. The map {e1, e2} - {e1, e2, e1 x e2}, where e1 x e2 is the vector product, 
defines a diffeomorphism of V2(R3) onto the set of all positively oriented ortho- 
normal bases of R3, that is, onto the group S0(3) of all real orthogonal 3 x 3 
matrices with determinant + 1. Therefore, the fundamental group of V2(R3) 
has precisely 2 elements and its non-zero homotopy class is represented by the 
closed path t -. {e1(t), e2(t)}, where e1(t) = (-sin 2wt, cos 2wt, 0), e2(t) =(0, 0, 1), 
0 ? t < 1. (See [4, p. 149].) Now consider V21(R3), the manifold of all 2-frames 
in R3. It is geometrically clear that V2(R3) is a deformation retract of V2(R3), 
so these manifolds have the same fundamental group, and its generator is still 
represented by the same path as before. 

(A) Let X c R3. A continuous field of 2-frames on X is a continuous map 
f: X - V2'(R3). Denote by D2 the unit disc of the plane z = 0 in R3 and by 
S1 = OD2 its boundary circle. The continuous map f: S1 - V2'(R3), given by 
f(x, y, 0) = {e1, e2}, with e1 = (-y, x, 0), e2 =(0, 0, 1), when considered as a 
closed path, agrees with the generator of 71( V2(R3)) above described, so it is 
not homotopic to a constant map, that is, it cannot be extended to a continuous 
map f: D2 - V2'(R3). In other words, there is no continuous field of 2-frames 
on D2 that agrees with f on S1. 

We indicate next some consequences of this elementary remark. The first 
one is a simplification of Reinhart's argument in [6, pp. 186-187]. 

(B) Consider the solid torus N3 = N, in R3 generated by rotating the disc 
D2 = {(x, y, O)eR3; x2 + y2 1} around, say, the axis y = 2, z = 0. Let T2= 
T =Ndenote the 2-torus generated by the rotation of S1 = OD2. The various 
positions occupied by S1 during the rotation are the meridian circles of T and 
the circles described by each given point of S' are called parallels. The 
meridians are homotopic to zero in N, the parallels represent a generator of 
7w1(N) = Z. In T itself, parallels cannot be told apart from meridians and, 
together, they represent the two free generators of r1(T) = Z + Z. Let X and 
Y denote orthonormal unit vector fields on T such that X is tangent to the 
meridians and Y is tangent to the parallels of T. There is no continuous field 
of 2-frames on N that agrees with {X, Y} on T. In fact, there is not even a 
field of 2-frames on D2 that agrees with X and Y on S1. 

This content downloaded from 66.180.162.103 on Tue, 30 Sep 2014 16:12:55 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


78 ELON L. LIMA 

In order to endow the sphere S3 with a foliated structure of class Co and 
dimension 2, G. Reeb [5] has introduced a foliation of the solid 3-torus N whose 
leaves are T = &N and planar leaves filling N - T. It is not difficult to define 
a continuous field of 2-frames {X, Y} on N, such that X and Y, at each point 
of N, are tangent to the Reeb foliation. It is not possible, however, to choose 
X and Y with the additional property that [X, Y] _ 0. 

More generally, the following is true: 
(C) Let N be a compact 3-manifold whose boundary is a 2-dimensional 

torus T = ON, such that the homomorphism h: w1(T) - r1(N), induced by the 
inclusion T c N is not a monomorphism. Then there exists no pair of com- 
muting vector fields X, Y on N which are linearly independent at each point 
and tangent to the boundary T. 

The proof uses the loop theorem of C. Papakyriakopoulos [8], according 
to which there exists a simple closed curve C c T which is not homotopic to a 
constant in T, but is the boundary of a topological disc D c N. We may assume 
that C and D are differentiably embedded. (This follows, for instance, from 
[2, Th. (6.3), p. 544].) We may also assume that D is transversal to T, hence 
D n T = C, since we could have started with the boundary of a tubular neighbor- 
hood of T in N, instead of T. Now assume that there exist linearly independent 
commuting vector fields X, Y on N which are tangent to T. They define a 
differentiable action q' of R2 on N such that each orbit has dimension 2, hence 
the boundary torus T is an orbit of q'. Therefore, if we fix at random a point 
x0 e T, the isotropy group of x0 is a discrete (free abelian) subgroup G, of R2, 
with 2 generators. The map of R2 onto T, defined by r - cr(x0) induces, by 
passage to the quotient, a diffeomorphism R2/Go T. This diffeomorphism 
sends the quotient image of any line parallel to a non-zero vector (a, b) E R2 
onto an orbit of the vector field U = aX + b Y in T. Since we may represent 
any element of the fundamental group of R2/GO by the image of a straight line 
in R2, it follows then that by choosing a and b conveniently in U = aX + b Y, 
we can make all the U-orbits of points in T be homotopic to the given simple 
closed curve C. Once chosen a, b, there is no difficulty in choosing c, d, so that 
the vector field V = cX + d Y is linearly independent of U. Clearly there is a 
diffeomorphism of T which is isotopic to the identity and carries, say, the U-orbit 
of x0 onto C. Such diffeomorphism may then be extended to a diffeomorphism 
of N, hence the U-orbit of x0 is, just as C, the boundary of a differentiable 2-disc 
E contained in N. A tubular neighborhood of E in N is diffeomorphic to the set 

P = {(x,y, z) E R3; X2 + y2 1,-1 < Z < +1}. 

This diffeomorphism carries E onto D2 and lets the vector fields U, V define a 
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field of 2-frames on P which, when restricted to D2, gives the one that was 
precluded by the initial remark (A). 

4. The main theorem 

In the proof of Theorem 3, an important tool is the following result: 

THEOREM 2 (Haefliger). A differentiable foliation of codimension one on 
a compact, simply-connected manifold has at least one leaf that is not simply- 
connected. 

PROOF. This follows readily from [1, Prop. p. 390]. Indeed, every differ- 
entiable foliation of codimension one on a compact manifold admits a closed 
transversal: just consider a solution curve C of the field of line elements 
orthogonal to the given foliation. By compactness, the c-limit set of the 
solution curve C is non-empty, so it contains a point x. Take a neighborhood V 
of x, trivially fibered by arcs of the orthogonal trajectories to the foliation. The 
curve C will cut the neighborhood V along countable many intervals. One may 
easily connect two consecutive intervals of C n V so as to obtain a differentiable 
simple closed curve y, transversal to the leaves of the foliation. Since the 
manifold is simply-connected Y is homotopic to a constant. By the mentioned 
Proposition in [1], there exists a leaf F of the foliation and a loop in F such 
that the germ of homeomorphism of R corresponding to that loop via holonomy 
is not the identity. Since the holonomy is invariant under homotopy (see [1, 
p. 378]), such loop is not homotopic to a constant in F, hence the leaf F is not 
simply-connected. 

The main theorem may now be proved. 

THEOREM 3. Every compact differentiable 3-manifold with finite funda- 
mental group has rank one. 

PROOF. Since every odd-dimensional manifold has rank at least one, the 
above statement means that if M is a compact differentiable 3-manifold with 
finite fundamental group, any 2 commuting vector fields X, Y on M must be 
linearly dependent at some point. The universal covering space of Mis a compact 
simply-connected 3-manifold to which the given vector fields may be lifted, so 
we do not lose any generality by assuming, as we do from now on, that M is 
simply-connected. 

Let then X, Y be commuting differentiable vector fields on M. Suppose 
(as if it were possible) that X, Y are linearly independent at each point of M. 
For each x e M, let D, denote the vector subspace of Mx spanned by X and Y. 
The map D: x - Dx defines a 2-dimensional sub-bundle of the tangent bundle. 
This tangent sub-bundle is integrable because of the relation [X, Y] _ 0 
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(cf. S. Lang. Introduction to Differentiable Manifolds, Ch. VI). The maximal 
integral submanifolds of D are 2-dimensional leaves of a foliation of M. By 
Theorem 2, this foliation has a non-simply-connected leaf. Now the leaves of our 
foliation are also the orbits of the action q: R2 x M- Minduced by the commu- 
ting vector fields X, Y. Therefore, a non-simply-connected leaf must be a (one 
to one continuous image of) cylinder or a torus. Let x0 e M be a point whose 
p-orbit is a cyclinder or a torus. The isotropy group Go of x0 is discrete and 
not zero. Let (a, b) e R2 be a free generator of G0. Replacing X, Y by X' = 
aX + b Y, Y' = cX + d Y, so that the constants a, b, c, d satisfy ad - bc # 0, 
we have X', Y' as linearly independent commuting vector fields on M, such that 
the X'-orbit of x0 is closed. Change notation, going back to X, Y, instead of 
X', Y'. 

By Theorem 1, there is a pp-orbit in M which is diffeomorphic to a 2-torus 
T. Let M1 and M2 be the two 3-manifolds with boundary T such that MN 
M1 U M2 and M1 n M2 = T. At least one of the inclusion homomorphisms 
r1(T) - rw(Ml), w1r(T) ) w1(M2) has a non-zero kernel for otherwise, by Van 
Kampen's theorem [7, p. 177], w1(IM) would be the free product of w1(Ml) and 
w1(M2), with amalgamation of the subgroup (isomorphic to) r1( T). Then w1(M) 
would contain a subgroup isomorphic to r1(T) (Schreier's theorem) which is 
contradictory, since r1(M) = 0. Let N be one of the manifolds M1, M, such that 
the injection r1(T) - w1r(N) has a non-zero kernel. We are in the situation of 
? 3, paragraph (C), hence the commuting vector fields X, Y must be linearly 
dependent somewhere in N. This concludes the proof of the theorem. 

REMARK. It may be that any simply-connected compact 3-manifold is 
horneomorphic with the sphere S3. If this is the case (or if one wishes to prove 
the above theorem only for manifolds that are covered by S3), then, instead of 
the Loop Theorem, ony may use the theorem of Alexander (Proc. Nat. Acad. 
Sci. (1924), pp. 6-8) according to which any 2-torus Tpiecewise linearly embedded 
in S3 is such that at least one of the components of S3 - T is a solid torus. 

COLUMBIA UNIVERSITY AND 
I. M. P. A., RIO DE JANEIRO 
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