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Commuting Vector Fields on S?

By ELON L. LIMA*

In this paper an answer is given to the question, first posed to me by
S. Smale, of whether the sphere S°® admits a pair of commuting vector fields
that are linearly independent at each point. The answer is no. The same
problem was considered independently by J. Milnor who, in the list of problems
of the Seattle Topology Conference (Summer 1963), defined the rank of a
manifold M as the maximal number of commuting vector fields on M that are
linearly independent at each point and asked, among other things, what is the
rank of S°.

In Milnor’s terminology, our main result (stated and proved in § 4) is that
every compact 3-manifold with finite fundamental group has rank one.

I am grateful to S. Smale and A. Haefliger for stimulating conversations
on this subject, and to J. Stallings for useful information.

1. Preliminaries

We shall adopt the C= point of view, so that the word differentiable is to
mean nfinitely differentiable. In this section we review the basic facts to be
used later.

A differentiable action of a Lie group G on a differentiable manifold M
is a differentiable map ¢: G X M — M such that @(gh, ) = ¢(g, ¢(k, x)) and
@(e, x) = x for any g, h € G, © € M, where ¢ denotes the neutral element of G.
For a given g € G, we write ¢,: M — M to denote the map defined by @ (x) =
#(g, ). Each ¢, is a diffeomorphism, whose inverse is ®,-1. The action ¢
induces, in a well-known way, a Lie algebra homomorphism ¢,: G — 9C(M) of
the Lie algebra of G into the space of all differentiable vector fields on M, called
the Lie homomorphism of ¢. Conversely, when M is compact and G is simply-
connected, any Lie algebra homomorphism h: § — 9C(M) is of the form h =,
for some action, ¢: G X M — M [3, p. 82]. We shall use this fact mainly when
G = R, and then, to give @, is the same as giving n differentiable vector fields
X, +++, X, on M such that [X;, X;] =0,7,5 =1, -+, n. Inthiscase, we say
that the given vector fields commute. An action of the additive group of the
reals is called a flow, so that a differentiable flow on a compact manifold M is
equivalent to a differentiable vector field on M. Given 2 commuting vector
fields X, Y on a compact manifold M, the relation between the flows
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COMMUTING VECTOR FIELDS ON S3 71

En: R X M— M, generated respectively by X and Y, and the action
@: R* X M — M determined by them is that, for any » = (s, t) € R? « € M, one
has @,(2) = £,(7,(%)) = 7:(£,(2)).

Given an action @: G X M— M, the orbit of a point « € M is the set (G X x)=
{®(g, x); g € G}. The sotropy group of « is the set G, = {9 € G; ¥(g, x) = x}.
G, is a closed subgroup of G. Given x € M, the map g — @,(x) of G onto the
orbit of « induces, by passage to the quotient, a one to one continuous map
G/G,— M of the homogeneous space G/G, onto the orbit of x. When @ is
differentiable, such map is regular (i.e., has an injective derivative at each

point) and, of course, when G/G, is compact, it is a diffeomorphism of G/G, onto
the orbit of x.

We are interested in the cases G = R and G = R*. Given a differentiable
flow & B X M — M, the isotropy group of a point x € M may be {0}, a discrete
subgroup with a generator s, > 0, or the whole real line. In the first case, the
orbit of x is a non-compact one to one regular image of E. In the second case,
the orbit of x is diffeomorphic to a circle and we say it is a periodic orbit, of
period s,, meaning that &,(x) = « if and only if s = n-s,, n integer. In the last
case, ¥ is a fixed point of the flow &, that is, &,(x) = « for every s. If X is the
vector field associated to the flow &, we refer to the orbits of the flow £ as X-
orbits and a fixed point of & is a point € M such that X(x) = 0, that is, a
singularity of X.

When G = R? theisotropy group G, of a point © € M under a differentiable
action @: R* X M — M may be one of the following. It may be the whole R?
and then 2 is a fixed point of @: its orbit reduces to {¢}. Next, suppose that
dim G, = 1. Then G, may either be a line through the origin of R? in which
case R*G, ~ R and the orbit of « is a regular one to one image of R, or else
G. consists of a sequence of parallel lines L + n-v,n» = 0, &1, 2, --. where
L is a line through the origin of R* and v € R*? is a vector not contained in L.
In this case R*/G, ~ circle, so the orbit of x is a simple closed curve. Finally,
the isotropy group G, may have dimension 0, that is, it may be a discrete sub-
group of the plane. This is the case we shall consider mostly. Here there are 3
possibilities. The first one is that G, = {0}. Then the orbit of x is a regular one
to one image of the plane R*. The second is that G, = {nv;n =0, £1, +2, ...}
is a cyclic group with one non-zero generator v € R*. Then R?G, is an infinite
cylinder of which the orbit of « is a one to one continuous image. The last
possibility is that G, be a free abelian group on 2 generators: G, = {mu + nv;
m,n =0, +1, £2, ---} where u = (@, b) and v = (¢, d) are linearly independent
vectorsin the plane R*. Then R?/G, is a torus and the orbit of x is diffeomorphic
to this torus. Again we remark that the orbit of « is compact if and only if

This content downloaded from 66.180.162.103 on Tue, 30 Sep 2014 16:12:55 PM
All use subject to JISTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

72 ELON L. LIMA

R?/G, is compact. Let X, Y be commuting vector fields corresponding to the
action @: R* X M — M. A point 2 € M is fixed under @ if and only if X(x) =
Y(x) = 0. The orbit of « under ® is 1-dimensional if and only if X and Y
are linearly dependent (but not simultaneously zero) at ®. The orbit of « is
2-dimensional if and only if X(x) and Y(x) are linearly independent.

Given the action @: G X M — M, if two points x, y € M belong to the same
orbit of @, then the isotropy groups G, and G, are conjugate subgroups of G.
So, when G is abelian, 2 points in the same orbit have the same isotropy groups.
A set X M is said to be invariant under ¢ if, for any x€ X and g €G,
@ (x)e X. Asubset X © M is said to be a minimal set under @ if it is compact,
invariant, non-empty, and contains no proper subset with these 3 properties.
By Zorn’s lemma, any non-empty invariant subset contains a minimal set.
Given a minimal set £ C M, the orbit of any point « € /¢ is dense in £, and from
this it follows readily that any 2 points of ¢# have conjugate isotropy groups.
When G is abelian, the isotropy group of all points in a given minimal set is
the same.

The w-limit set of a point € M under a flow & R X M — M is the set
& () of all points y = lim, &, (»), where s, — . When M is compact, the
-limit set &,.(x) of each point x € M is a non-empty, connected, invariant,
compact subset of M.

To conclude this introductory section, we prove a topological lemma which
is well known, but we need every part of its statement.

Let V= V"' be a closed, connected (n — 1)-manifold, topologically
embedded in a compact, connected n-manifold M = M™". The homology group
H,_.(V; Z,) has only one non-zero element. Denote by 7: V < M the inclusion
map. When ©,: H,_(V; Z,) — H,_(M; Z,) is the zero homomorphism, we say
that V bounds in M.

From now on we omit mention of the coefficient groups in homology, and
cohomology, assuming them to be always Z,.

LEMMA 1. If V™ bounds in M", then

(a) M — V has 2 connected components;

(b) V 1is the complete point-set boundary of each component of M — V;

(¢) Given a coordinate system x: Q — R™ such that x(Q) is a ball around
the origin and x(Q N V) = {(x,, -+, x,) € x(Q); x, = 0}, let a, b e Q be points
such that x(a) and x(b) lie in different sides of the hyperplane x, = 0. Then
a and b belong to distinct components of M — V.

ProOF. We prove (c) first. Replacing, if necessary, Q by a smaller domain,
we may assume that « is also defined in the boundary of Q. Clearly @ — V
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Fig. 1

has 2 connected components A, B, with a € A, b € B. Suppose, by contradiction,
that ¢ and b could be joined by an arc v, M — V. Of course, \, is not
contained in Q. Let a’ be the last point of A, that lies in the boundary of A.
Replace the part of A\, that goes from a to a’ by an arc aa’ such that x(ac’) =
line segment joining x(a) to #(a’). Do the same to b. Let A, be an arc connecting
a to b in Q such that x(\,) = line segment from x(a) to x(b). Then aa’, the
untouched middle part of \,, b’b and \, form a closed curve \ in M, intersecting
V transversally and only at one point ¢. Hence the intersection number (mod 2)
of Vand v is V#X = 1. On the other hand, V bounds in M, so VX =0.
This contradiction proves (c).

The proofs of (a) and (b) may also be given by geometric arguments,
provided that we assume V nicely embedded in M (as in the case we shall
encounter). But it is neater—if less intuitive—to use the Lefschetz duality
theorem, according to which H(M — V)~ H"(M, V). In order to compute
H"(M, V), we consider the cohomology exact sequence:

H*M)— H*V)— H"M, V)— H*(M)— H(V) .
The first homomorphism is zero because it is the transpose of 7,.. The last group
is zero because dim V =n — 1. The second and fourth groups are isomorphic
to Z,. Hence H"(M, V)~ Z, + Z,,s0 H(M — V)~ Z, + Z,, and M — V has
2 connected components. This proves (a).

As to (b), it is clear that the point-set boundary of each component of
M — Viscontainedin V. To prove the converse inclusion, it suffices to show
that, for any open ball Bc V, the subset V' = V — B does not disconnect M.
Now V' is compact and H*%(V’) = 0. Using duality and exact sequence as
before, we see that H(M — V')~ H*(M, V')~ Z,, so M — V' is connected.

2. The main argument

THEOREM 1. Let X and Y be commuting vector fields on a compact
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74 ELON L. LIMA

stmply-connected 3-manifold M. Assume that X has a closed orbit and no
singularities on M. Then the action of R* on M determined by X and Y has
a compact orbit. (That is, a circle or a torus.)

ProoF. Denote by & n: R X M — M the flows generated by X and Y
respectively, and let @: R* X M — M be the corresponding action of R*on M
so that, for » = (s, t) € R*and « € M, ¢.(x) = £7,(x) = 1,&(x). Consider a point
x, € M whose £-orbit is closed, say of period s, > 0, so &, (%,) = ,, but &,(x,) =
x, for 0 < s < ;. Call K the closure of the p-orbit of «,. By continuity, &, (x) =
x for every x € K. Since X has no singularities, the &-orbit of every « e K is
then closed, with a period of the form s,/n, » > 0 an integer. Clearly K is a
compact, @-invariant, non-empty subset of M, so we may choose a minimal set
¢ C K for the action .

The X-orbit of every point x € ¢ is closed, with the same period s, = s,/n,.
In fact, by the minimality of £, given any two points x, ¥ € ¢, each of them
belongs to the closure of the ¢-orbit of the other. Suppose that, for some s ¢ R,
&(x) = x. We may write y = lim, ¢, (®), 7, — o in E*. Hence

&) = lim &, () = lim@, &(x) = limp, (v) =y .

Interchanging the roles of « and y, we see that &,(x) = x if, and only if, &,(y) = v.
Therefore, the X-orbits of  and y have the same period s,.

Pick a point @, € £. If X(x,) and Y(x,) are colinear, then the @-orbit of «,
is the same as its X-orbit, so it is a circle, and the theorem is proved. We may,
therefore, assume that X(x,) and Y(«,) are linearly independent. Let <, denote
the (closed) orbit of x, under X. For each x € v,, the vectors X(x) and Y(x) are
linearly independent. The @-orbit of «, is either a one to one regular image of
a cylinder or it is a torus. We exclude the latter case, because it is what we
want to prove.

Let « be an arbitrary point of v,. Given any neighborhood U of 7, in M,
there are arbitrarily large positive values of ¢ such that the point 7,(x), in the
Y-orbit of @, returns to U. This means that the @-limit set 7. ..(x) of the Y-orbit
of « intersects 7,. In order to see this, let L = &R X 7,.(x)) be the union of
all the X-orbits of points in 7...(x). The X-orbit of every point of 7,.(x) has
period s, because 7..(x) C £, So L = &([0, s,] x 7.+«(%)), hence L is compact.
Since L is evidently non-empty, invariant, and contained in £, we must have
L = p¢. In particular, ¢ € L. This means X = £(y) for some s € R and some
Y €71(x). Then y = &_,(x), so y €7, and consequently y €7, N 7,.(x), as we
wanted to show.

Let S be an open 2-dimensional cylindrical band, having 7, as its equator
and transversal to all Y-orbits that intersect it. S will be constructed as a
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narrow ruled surface spanned by geodesic segments normal to the cylindrical
@-orbit along 7, (in some riemannian metric of M). Replacing, if necessary,
S by a smaller band relatively compact in it, we may assume that there exists
€ > 0 such that the segments of Y-orbit I, = {n,(x); It | < €}, of length 2¢ and
origin x € S, form a (trivial) fibration, with base S, of the open set V = L,
x € S. Denote by 7: V — S the projection map that assigns to each 7, (x) e V
its origin xz € S.

We choose S so narrow that the geodesic segments that generate it are
transversal not only to the ¢-orbit containing 7,, but also to the @-orbits of all
points x € S. Notice that, since the @-orbit of every point of # is dense in g,
there are points ¢ € SN ¢ arbitrarily close to 7, so close that the X-orbit of « lies
entirely in V, hence it may be projected by 7 into S. By the previous remark,
such projection is a simple closed curve in S, transversal to the generatrices
of S, hence homotopic to 7, (and disjoint from it) in S. From this it follows
that we may narrow S down further, in such a way that its absolute boundary
S — S = 68 consists of 2 of those curves, that is, two circles each of which lies
entirely in one cyclindrical @-orbit in £, but not in the @-orbit containing 7,.
Assume, from now on, that S has this property.

Define a real-valued funection 7: v, — R by letting 7(x) = smallest positive
number 7 such that 7.(x) € S. Clearly 7 is well defined, since for ¢ = ¢’ and
7,(x), 7,.(x) € S one must have |t — ¢’ | > 2¢. The preceding remark shows that,
as « varies in v, 7. ,,(¢) keeps away from 0S. This implies that 7 is a continuous
function on v,. Indeed, a simple application of the implicit function theorem
will show that 7 is differentiable.

The map & — 7. ,,(x) defines a diffeomorphism of v, onto a simple closed
curve v, S. Unlike 7v,, 7, may or may not be an orbit of X. In any case 7,
cuts each generatrix of S transversally hence exactly once, so v, is homotopic
to v, in S. Consequently, if we show that v, N 7, = @, there will be a ring A
in S, bounded by v, and 7,. This is proved next.

We have assumed, by contradiction, that the @-orbit containing 7, is not
a torus, so it is a continuous one to one image of a cylinder. Under these
circumstances, v, and v, must be disjoint, because the existence of a common
point ¥ €7, N ¥, would give ¥ = 7.(x) for some & €7, and ¢ = 7(x). On the other
hand, ¥ = &,(x), s€ B. Hence

T = ‘S—sy]r(x) = @r(x)y r= (—Sv T) .

Since 7 # 0, the vectors (s,, 0) and (—s, 7) are linearly independent. They both
belong to the isotropy group of  under the action @, so this group is free on
2 generators, and the p-orbit containing,isa torus, contrary to theassumption.
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76 ELON L. LIMA

Notice that we are assuming actually that no @-orbit in /¢ is a torus, so if x € ¢
and ¢t = t’, one must have 7,(x) + £7%,(x) no matter which s € R is chosen.

Consider now the compact cylinder B = {9, (x); x €7, 0 = t < z(x)}. To-
gether with the ring A C S, bounded by <, and v,, B forms a topological torus
T = AU B, embedded in the manifold M. Now we apply Lemma 1. Since M
is simply-connected, Hy(M; Z,) = 0, by Poincaré duality. Hence 7' bounds in
M. Lemma 1 then provides us with the following: M — T = C, U C, is the
disjoint union of 2 connected components, each of which has 7' as its point-set
boundary. Moreover, if ¢ > 0 is the number introduced in the definition of S,
andA—A— B (the absolute interior of A), then the set {7,(x); x € /i, 0<t<¢}
lies entirely in one component, say C,, whereas the set {7,(x); x € fi, et <0}
is contained in C,.

We need, however, a little more than this, namely: for any y €<, and
—e=1t<0,n(y) e C,. (Similarly,if zev,and 0 <t < ¢, then 7,() e C,.) To
prove this, let u — a(u), 0 < u < 1, be a path in A, going from a point x(0) € A
to the given ¥y, without touching any other point of B besides y. Then u —
7n.(x(w)) is a path in M, starting at 7,(x(0)) € C, and never touching 7 for u < 1.
So, 7.(y) = N.(x(1)) either belongs to T (that is, to B) or to C,. But it is clear
that 7,(y) ¢ B, so 7,(y) € C,.

Fig. 2

Let v = 7_.(7,), so 7 is a closed orbit of X, entirely contained in C,. Choose
a point w ey, As we have seen earlier, there are arbitrarily large positive
values of ¢ for which 7,(w) returns to any pre-assigned neighborhood of v. In
particular, »,(w) must return to C, for some values of ¢ strictly greater than
t(w) + e. Now, for t(w) + ¢ < t < t(w) + 2¢, P(w) € C,. Therefore, 7,(w)
may only leave C, and enter C, for values t > t(w) + 2¢. But how? First of
all, 7,(w) cannot cross A from C, to C, because all the stream lines of the flow
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7 in A lead to C,. Secondly, 7,(w) cannot touch B for values t > 7(w) + 2¢
because this would give n,(w) = &7,(w) with t’ < 7(x) + ¢, hencet # t’. This,
however, contradicts a previous observation and it is the final contradiction
that proves the theorem.

3. Fields of 2-frames in 3-manifolds

Let V,(R?®) denote the Stiefel manifold of orthonormal 2-framesineuclidean
space R®. The map {e,, e,} — {e,, €., ¢, X e}, wheree, X e,is the vector product,
defines a diffeomorphism of V,(R?®) onto the set of all positively oriented ortho-
normal bases of R?, that is, onto the group SO(8) of all real orthogonal 3 x 3
matrices with determinant +1. Therefore, the fundamental group of V,(R?)
has precisely 2 elements and its non-zero homotopy class is represented by the
closed path t — {e,(t), e,(t)}, where e,(t) = (—sin 2xt, cos 27t, 0), e)(t) = (0, 0, 1),
0=1t=1. (See[4, p.149].) Now consider V;(R?), the manifold of all 2-frames
in R®. It is geometrically clear that V,(R®)is a deformation retract of V,(R?),
so these manifolds have the same fundamental group, and its generator is still
represented by the same path as before.

(A) Let X< R®. A continuous field of 2-frames on X is a continuous map
f: X— VJ(R*). Denote by D* the unit disc of the plane z =0 in R® and by
S* = 0D its boundary circle. The continuous map f: S* — V,(R?), given by
flz, ¥, 0) = {e, e}, with e, = (—y, «, 0), e, =(0,0,1), when considered as a
closed path, agrees with the generator of 7,(V,(R?)) above described, so it is
not homotopic to a constant map, that is, it cannot be extended to a continuous
map f: D*— VJ(R?). In other words, there is no continuous field of 2-frames
on D? that agrees with f on S*'.

We indicate next some consequences of this elementary remark. The first
one is a simplification of Reinhart’s argument in [6, pp. 186-187].

(B) Consider the solid torus N° = N, in R® generated by rotating the disc
D?* ={(x,y,0)e R% 2* + y* < 1} around, say, theaxisy = 2,2 = 0. Let 7” =
T = 0N denote the 2-torus generated by the rotation of S* = 0D?. The various
positions occupied by S* during the rotation are the meridian circles of T and
the circles described by each given point of S*' are called parallels. The
meridians are homotopic to zero in N, the parallels represent a generator of
7w(N) = Z. In T itself, parallels cannot be told apart from meridians and,
together, they represent the two free generators of 7(7) = Z + Z. Let X and
Y denote orthonormal unit vector fields on 7 such that X is tangent to the
meridians and Y is tangent to the parallels of 7. There is no continuous field
of 2-frames on N that agrees with {X, Y} on T. In fact, there is not even a
field of 2-frames on D’ that agrees with X and Y on S™.
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In order to endow the sphere S® with a foliated structure of class C= and
dimension 2, G. Reeb [5] has introduced a foliation of the solid 3-torus N whose
leaves are T = 0N and planar leaves filling N — T. It is not difficult to define
a continuous field of 2-frames {X, Y} on N, such that X and Y, at each point
of N, are tangent to the Reeb foliation. It is not possible, however, to choose
X and Y with the additional property that [X, Y] = 0.

More generally, the following is true:

(C) Let N be a compact 3-manifold whose boundary is a 2-dimensional
torus T' = 8N, such that the homomorphism A: 7,(T) — 7,(N), induced by the
inclusion T'C N is not a monomorphism. T hen there exists no pair of com-
muting vector fields X, Y on N which are linearly independent at each point
and tangent to the boundary T.

The proof uses the loop theorem of C. Papakyriakopoulos [8], according
to which there exists a simple closed curve C — T which is not homotopic to a
constant in T, but is the boundary of a topological disc D < N. We may assume
that C and D are differentiably embedded. (This follows, for instance, from
[2, Th. (6.3), p. 544].) We may also assume that D is transversal to 7T, hence
DN T = C,since we could have started with the boundary of a tubular neighbor-
hood of T in N, instead of T. Now assume that there exist linearly independent
commuting vector fields X, Y on N which are tangent to T. They define a
differentiable action ¢ of R? on N such that each orbit has dimension 2, hence
the boundary torus T is an orbit of . Therefore, if we fix at random a point
x,€ T, the isotropy group of «, is a discrete (free abelian) subgroup G, of R?,
with 2 generators. The map of R’ onto T, defined by r — ®,(x,) induces, by
passage to the quotient, a diffeomorphism R’/G,~ T. This diffeomorphism
sends the quotient image of any line parallel to a non-zero vector (a, b) € R?
onto an orbit of the vector field U = aX + bY in T. Since we may represent
any element of the fundamental group of R?*/G, by the image of a straight line
in R?, it follows then that by choosing @ and b conveniently in U = aX + bY,
we can make all the U-orbits of points in T be homotopic to the given simple
closed curve C. Once chosen a, b, there is no difficulty in choosing ¢, d, so that
the vector field V = ¢X + dY is linearly independent of U. Clearly thereisa
diffeomorphismof 7T which is isotopic to the identity and carries, say, the U-orbit
of x, onto C. Such diffeomorphism may then be extended to a diffeomorphism
of N, hence the U-orbit of «,is, just as C, the boundary of a differentiable 2-disc
F contained in N. A tubular neighborhood of E in N is diffeomorphic to the set

P={x,y,2)eR52*+y'<1, —1<z< +1}.
This diffeomorphism carries E onto D* and lets the vector fields U, V define a
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field of 2-frames on P which, when restricted to D? gives the one that was
precluded by the initial remark (A).

4, The main theorem
In the proof of Theorem 3, an important tool is the following result:

THEOREM 2 (Haefliger). A differentiable foliation of codimension one on
a compact, simply-connected manifold has at least one leaf that is not stmply-
connected.

Proor. This follows readily from [1, Prop. p. 390]. Indeed, every differ-
entiable foliation of codimension one on a compact manifold admits a closed
transversal: just consider a solution curve C of the field of line elements
orthogonal to the given foliation. By compactness, the w-limit set of the
solution curve C is non-empty, so it contains a point x. Take a neighborhood V
of x, trivially fibered by arcs of the orthogonal trajectories to the foliation. The
curve C will cut the neighborhood V along countable many intervals. One may
easily connect two consecutive intervals of C N V so as toobtain a differentiable
simple closed curve 7, transversal to the leaves of the foliation. Since the
manifold is simply-connected v is homotopic to a constant. By the mentioned
Proposition in [1], there exists a leaf F' of the foliation and a loop in F' such
that the germ of homeomorphism of R corresponding to that loop vta holonomy
is not the identity. Since the holonomy is invariant under homotopy (see [1,
p. 378]), such loop is not homotopic to a constant in F, hence the leaf F is not
simply-connected.

The main theorem may now be proved.

THEOREM 3. Every compact differentiable 3-manifold with finite funda-
mental group has rank one.

PRrROOF. Since every odd-dimensional manifold has rank at least one, the
above statement means that if M is a compact differentiable 3-manifold with
finite fundamental group, any 2 commuting vector fields X, Y on M must be
linearly dependent at somepoint. Theuniversal covering spaceof M is a compact
simply-connected 3-manifold to which the given vector fields may be lifted, so
we do not lose any generality by assuming, as we do from now on, that M is
simply-connected.

Let then X, Y be commuting differentiable vector fields on M. Suppose
(as if it were possible) that X, Y are linearly independent at each point of M.
For each x € M, let D, denote the vector subspace of M, spanned by X and Y.
The map D: x— D, defines a 2-dimensional sub-bundle of the tangent bundle.
This tangent sub-bundle is integrable because of the relation [X, Y] =0
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(cf. S. Lang. Introduction to Differentiable Manifolds, Ch. VI). The maximal
integral submanifolds of D are 2-dimensional leaves of a foliation of M. By
Theorem 2, this foliation has a non-simply-connected leaf. Now the leaves of our
foliation are also the orbits of the action @: R?> X M— M induced by the commu-
ting vector fields X, Y. Therefore, a non-simply-connected leaf must be a (one
to one continuous image of) cylinder or a torus. Let x,€ M be a point whose
@-orbit is a cyclinder or a torus. The isotropy group G, of «, is discrete and
not zero. Let (a, b) € R? be a free generator of G,. Replacing X, Y by X' =
aX +bY,Y =cX + dY, so that the constants a, b, ¢, d satisfy ad — bc = 0,
we have X', Y’ aslinearly independent commuting vector fields on M, such that
the X'-orbit of x, is closed. Change notation, going back to X, Y, instead of
X, Y.

By Theorem 1, there is a @-orbit in M which is diffeomorphic to a 2-torus
T. Let M, and M, be the two 3-manifolds with boundary T such that M =
M, UM, and M,N M, = T. At least one of the inclusion homomorphisms
7 (T)— 7 (M), 7(T) — m(M,) has a non-zero kernel for otherwise, by Van
Kampen’s theorem [7, p. 177], 7, (M) would be the free product of (M) and
w(M,), with amalgamation of the subgroup (isomorphic to) 7,(7"). Then 7,(M)
would contain a subgroup isomorphic to 7,(T) (Schreier’s theorem) which is
contradictory, since 7,(M) = 0. Let N be one of the manifolds M,, M, such that
the injection 7,(T) — 7,(N) has a non-zero kernel. We are in the situation of
§ 3, paragraph (C), hence the commuting vector fields X, Y must be linearly
dependent somewhere in N. This concludes the proof of the theorem.

REMARK. It may be that any simply-connected compact 3-manifold is
homeomorphic with the sphere S®. If this is the case (or if one wishes to prove
the above theorem oniy for manifolds that are covered by S?), then, instead of
the Loop Theorem, ony may use the theorem of Alexander (Proc. Nat. Acad.
Sci. (1924), pp. 6-8) according to which any 2-torus 7 piecewise linearly embedded
in S? is such that at least one of the components of S°® — T is a solid torus.

CoLUMBIA UNIVERSITY AND
I. M. P. A., RI0O DE JANEIRO
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