Common Singularities
of Commuting Vector Fields on 2-manifolds

by Eron L. Lima?

In this paper, we give the details of our research announcement [5]. We
are concerned with vector fields X, Y, ... on a 2-manifold M. These are said
to commute if the Lir bracket [X, Y] vanishes identically on M. The final
result is that any set of pairwise commuting vector fields on a compact 2-mani-
fold with non-zero EvLER characteristic has a common singularity.

The proof here presented is, in principle, the same that was sketched in [5],
except for style and the correction of a minor mistake that was pointed out to
us by H. Epwarps. The organization of the proof is such that the results of [4]
are also included, so that this paper is entirely self-contained. We also single
out, in § 2, some lemmas that seem to have independent interest.

A finite collection of commuting vector fields on a compact manifold M is
equivalent to a differentiable action of an abelian Lig group on M. The next
best thing to an abelian LIk group is a solvable one. The group of affine trans-
formations of the real line is the simplest possible solvable Liz group. In an
appendix we show how this group can act without fixed points on a 2-dise,
hence on a 2-sphere. It is not difficult to get fixed point free actions of the affine
group of the line on a compact cylinder and on a torus. We do not know, however
whether or not it may act without fixed points on all compact 2-manifolds. It
goes without saying that it would be very interesting to have theorems on
common fixed points of vector fields for manifolds of higher dimensions.

I am grateful to S. SMALE for his manifold interest in this work.

1. Preliminaries

All manifolds in this paper are connected and may have boundary. The
boundary of a compact 2-manifold M is a finite union of disjoint closed curves,
which we call the boundary circles of M. Throughout this paper we use freely
folk theorems on the topology of 2-manifolds. We refer to [1] for explicit
Proofs of these results.

An action of a topological group G on a space M is a continuous map
9:GXM—->M such that, for all g, he G and xe M, ¢ (gh, ) = ¢(g, p(h, )
and @(e, ) = x, where ee G is the neutral element. When @ is a Lir group
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and M is a differentiable manifold one has also the notion of a differentiable
action. A flow is an action &: RX M —M of the additive group of the reals. To
give a differentiable flow on a compact manifold M is equivalent to give a
differentiable vector field on M (with the additional condition that, if M has a
boundary, the field must be tangent to it). We shall tacitly assume this condi-
tion, whenever we refer to vector fields.

Let X be a C* vector field on a compact manifold M and let &: Rx M—~M
be the corresponding flow. Given xe M, one has X (z) = 0(x is a singularity
of X) if, and only if, £(s,x) = a for all s eR, that is, z is a fixed point of the
flow £. Let Y be another vector field on M, generating a flow 7. The condition
that the Lie bracket [X, Y] be identically zero means that £(s, (¢, z)) =
=n(t, £(s, z)) for all s, teR and all xeM. Then we say that the flows
£, n commute and this is why X and Y are said to commute when [X, Y] = 0.
The pair X, Y generates, then, an action ¢: K> X M — M of the additive
group of the plane on M, defined by ¢(r, z) = &(s, n(t, x)) = n(¢, &(s, ®))
for x e M and r = (s,t) eR%. A point x eM is fixed under ¢ if, and only if,
it is a common singularity of the commuting vector fields X and Y, that is,
X(x) = Y(x) = 0. Similarly, any finite number of commuting vector fields
X,,..., X, on a compact manifold M generate an action p: B" X M—>M.

Our main result is:

Theorem A. Ewery (continuous) action of the additive group R™ on a compact
2-manifold M, with y (M) % 0, has a fixed point.
Above, y (M) denotes the EULER characteristic of M . As a consequence:

Theorem B. Let X,,..., X, be pairwise commuting vector fields of class C*
on a compact 2-manifold M, with y (M) % 0. There exists a point x eM such
that X,(x) = ...= X, (z) = 0.

It was remarked to me by R. Erris that the above result may be extended
to an arbitrary collection {X,} of commuting vector fields on a compact
2-manifold M, with yx (M) # 0. In fact, for every finite non-empty subset
A = {a,...,, of theindices a, let F(4) be the set of common singularities
of the vector fields X R X,,- By Theorem B, each F(4)is a closed non-
empty subset of M. Clearly F(4,)~...~nF(4,)=F(Ad,v...v4,)#3,
so the family {F(A)} has the finite intersection property. Since M is compact,
it follows that F = Q F(4) is non-empty. But each point z ¢F is a common

singularity of all the vector fields X,. Evidently, the same method shows the
existence of a fixed point for any action ¢:G X M — M of a topological
abelian group G which is generated by subgroups isomorphic to EvcrLipean
spaces R".

We conclude this introduction with a few definitions.
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Given an action ¢: G X M -~ M of the topological group G on the space M,
the orbit of a point x e M is the set ¢(G X z) = {plg, ) eM; geG}.

The isotropy group of a point x eM is the set G, = {ge@; (g, ) = x}.
It is clearly a closed subgroup of G and the map g ¢{g, x) induces, by passage
to the quotient, a 1-1 continuous map of the homogeneous space G/G, onto
the orbit of . When ¢ is a flow, the isotropy group of a point may be {0}, a
discrete group {0, -+ &, 4+ 24, ...; % > 0} or the whole real line. In the first
case, * has a non-compact orbit; in the second case, the orbit of x is a simple
closed curve, and we say it is a periodic orbit, of period t,, and in the third case
z is a fixed point. Aset X — M is said to be tnvariant under ¢ if @(g, z)e X
for every g €@ and every z eX. A minimal set under ¢ is an invariant, non-
empty, closed subset X ¢ M which contains no proper subset with these 3
properties. Les £: B X M — M be a flow and z a point of M . The w-limit set
of x is the set of all points ye M which can be written as y = lim £(¢,, x)

n

with ¢, - + oco. The w-limit set of every point is a closed, invariant, subset
of M and, if M is compact, it is also non-empty (and connected). The orbit of x
under the flow & is said to be recurrent if it is not compact and is contained in the
w-limit set of . Any orbit in a minimal set of a flow is either the whole set or is
recurrent. When the group @ is abelian, then every point in the same orbit has
the same isotropy group. Also, if ¢ is a minimal set relative to the action of an
abelian group @, every point z ex has the same isotropy group.

Finally, we use the terminology ‘g-invariant’, ‘&-orbit’, ‘p-minimal’, etc., as
obvious abbreviations, whenever there are more than one action in the argu-
ment.

2. Some lemmas

In this section, we gather together a few general facts, for use in the proof
of our main theorem. Some of them are well known, some are new, but all
have a certain independent interest.

Lemmal. Let ¢: G X M-—> M be a continuous action of a simply-connected
topological group G on the space M. Let p: (M*, x3) — (M, x,) be any covering
space of M. There extsts a unique continuous action ¢*:G X M* - M* that
tovers @, in the sense that the diagram below is commutative:

gl?*
Gx M* _*  ,M*
l td X p lp
axM__¥ M.
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Proof: Let the subscript 3 denote the induced homomorphism on the
fundamental group. Write f = ¢,(id X p). The simple connectivity of @
implies that the image of f,: = (G X M*) - n;(M) equals the image of
Pyt 7 (M*)— 7, (M). So, by covering space theory, there exists a unique map
p*: G X M* > M*, making the above diagram commutative and such that
¢*(e, 73) = 7, e = neutral element of G. Now we show that ¢* is an
action. First ¢*(e, #*) = z* for all z* e M*, because both maps «: x*—
—>@*(e, 2*) and B:a* — a* cover the identity map of M and «(a}) = x}.
Second, ¢*(g,¢*(h, 2*)) = ¢*(gh,x*) forall g,he@ and z* e M*, because
bothmaps A,u:G X G X M* — M*, definedby i(g,h,z*)=¢*(g, ¢*(h, =*))
and u(g, kb, *) = ¢*(gh, *) cover themap v: @ X G X M — M, given by
v(g, b, z) = @(g, p(h, 2)) = @(gh, ), and A(e, e, x:) =pule,e, x:) = x:

Remark: Given z* eM*, and =z = p(z*), then z is a fixed point of ¢
if, and only if, x* is a fixed point of ¢*.

The consequence of the preceding lemma is that, for our purposes, all mani-
folds may be taken to be orientable. In fact, if ¢: G X M — M is an action
on a non-orientable manifold M, let p: M*—~ M be its orientable ‘double
covering.’ Lift ¢ to an action of G on M*. (In our case, the group ¢ is a vector
space, so it is always simply-connected.) M* is compact if M is, and y(M*) =
=2.x(M), so x(M*) £ 0 if x(M) 0. Of course, the reduction to M
orientable is not really essential but simplifies the consideration of cases. This
orientability shall be assumed in the proof of the main theorem, but not in its
statement, nor in any of the following lemmas.

Lemma 2. Let ¢: G X M—~ M be a continous action of a topological group
G on a space M . Every compact invartant subset X < M contains a minimal set.

Proof: Zorn.

Let £: R X M—> M be a flow on a 2-manifold M, and let y eM. A local
cross-section of £ at y is a subset S of M, homeomorphic to a compact interval
[—a, + a], containing y, and such that for some e> 0, the map[— e, + €]
X 88— M, given by (t, )~ £(t, ) is a homeomorphism onto the closure of
an open set containing y. The image of this homeomorphism is called a rectan-
gular neighborhood of y (relative to the flow &). The point y is an end point of §
if, and only if, y is in the boundary of the manifold M .

Lemma 3. Let £: R X M —> M be a flow on a 2-manifold M and let y eM
be a point whose isotropy group is discrete. There exists a local cross-section of &
at y (so y has a rectangular neighborhood).

Proof: For a differentiable flow &, the cross-section S may be taken as any
small transversal segment to the vector field of & (see [2], page 392). For an
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arbitrary flow, the existence of S was established by H. WHITNEY (see [8], pages
270 and 260).

Lemma 4. Every flow £&: R X M—->M on a polyhedron M, with EULER
characteristic y(M) 5= 0, has a fized point.

Proof: This is a consequence of the LEFScHETZ fixed point theorem, ac-
cording to which every continuous map f: M - M, homotopic to the identity,

has a fixed point. For n=1, 2, 3,..., let f,: M—> M be defined by
f.(x) = E(1/2", ). Theset F, ofall fixed points of {, is compact, non-empty,
and Fi,> F,>.... Then F =nF, # @. Clearly F is the set of fixed

points of the flow &.

We say that a minimal set of a flow is non-frivial is it is not (homeomorphic
to) a point, a circle or a torus. DENJOY [3] gave an example of a flow of class C?
on the torus, with a non-trivial minimal set. A modification of this example
gives non-trivial minimal sets on any 2-manifold of higher genus [6]. According
to a theorem of A.ScEwaRTz [7] and A. DENJOY [3], & flow of class C% on a
2-manifold does not admit non-trivial minimal sets. For flows that are merely
continuous the best result about non-trivial minimal sets is the lemma below,

which was communicated to me by M. PErxoro. It is a generalization of the
classical PorNcar¥#-BENDIXSON theorem:

Lemma 5. 4 flow &: R X M—> M on a manifold M of finite genus g has
at most 29 — 1 distinct non-trivial minimal sets.

Proof: Observe that ‘distinet’ and ‘disjoint two by two’ are synonimous for
minimal sets. We may assume that M is orientable because its double covering

M* would have the same genus, and &* on M* would admit at least as many
non-trivial minimal setsas &.

The proof goes by induction - ,
onthegenusg. A preliminary b —>> b
remark: the curves in the ”

boundary of M are submani- 2 s
folds (with the induced topo- ¢ .

logy) and are orbits of &,
except when £ has a fixed
point in one of them, so every
non-trivial minimal set u lies
in the interior of M. Now Figure 1.

consider g = 0. Then we

may assume M < R2, and Lemma 5 is the classical PoiNCARE-BENDIXSON
theorem : assuming u c M to be a non-trivial minimal set, we choose zeu
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and take a rectangular neighborhood ¢ around z. The orbit of x must return
to this neighborhood and then it gets trapped in the planar region bounded
by the JorDAN curve a a’ b’ a. The w-limit set of x would be a proper in-
variant closed subset of 1, a contradiction.

Assume now that g > 0 and that the lemma has been proved for all surfaces
of genus < g. Givena flow £: R X M — M on a surface of genus g, suppose,
by contradiction, that u,,..., u,
are 2¢g distinet non-trivial minimal

b | > sets of £ in M. Let @ be a rectan-

/ b gular neighborhood of a point ze y,,

' (refer to Figure 1). Choose @ sosmall

Q that it does not intersect the remain-

- ing minimal sets u;, 1 <{2g9 —1,
and @~ M = o&.

Consider the following homeomor-

- phism A:Q— Q. It is the identity

Figure 2. on all sides of @ but the vertical

right side, where A is linear and

h(a') = b'. In the interior of @, 4 is defined by mapping linearly each hori-

zontal segment yy' onto the segment yh(y').

We define a new flow & : R X M— M by requiring that, outside @, the
orbits of ¢ are the same as those of &, and traversed in the same way. Inside
@, the orbits of £, are the images by % of the £-orbits. (It would be rather
tedious but not hard to describe &' formally.) Under the new flow &', the point
a has a closed orbity . Observe also that p,, . . ., ug,_, arestill minimal sets of &'.

The curve y cannot separate M : if this happened, the closed curve a o' b’ a,
of Fig. 1, would also separate M and, arguing with &, this would lead to a
contradiction, just as in the case of genus zero. Therefore, by cutting M along
y, we obtain one manifold of genus g — 1, on which the flow ¢’ is defined and
admits at least the non-trivial minimal sets pg,, ..., us,_;, & contradiction,
since 29 — 1> 2(9 — 1) — 1. This concludes the proof of Lemma 5.

Remark: It was actually proved above that, in a manifold of genus g, there
are at most 2g — 1 recurrent orbits with pairwise disjoint closures. (In
particular, there are no recurrent orbits in a manifold of genus zero.) Notice
that this result gives information also in the differentiable case, since recurrent
orbits exist even for C® actions.

Lemma 6. Let £: R X M—> M be a flow on a 2-manifold M. Suppose that
x €M is such that x = lim x, where each =, has a closed orbit pu,, of period
t,. Then:
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(a) If the genus of M is finite, the orbit of x cannot be recurrent:

(b) If x has a closed orbit u, of period t,, one must have limt, = a - t,(a =1 or
2, according to whether u 1s two-sided or ome-sided tn M), and u = {y eM;
y=limy, yeu,,m=1,2,3...}.

Proof: To prove (a) let @ be a rectangular neighborhood of «. Clearly no
boundary point of M may have a recurrent orbit, so we may assume that ¢ is
disjoint from the bound-

ary of M. Consider first >
the special case in which, — ¢
for infinitely many val-
: (24

ues of n, there exists an T 7T
open set 4, ¢ M whose B

: PNONONNONNNINN-SIN NN
point set boundary 94, =
satisfies the condition - \
aAn ~ Q C YU, Q (FOI‘
instance, if u, separates |
M .th.ls situation occurs. Y /
This is actually the only
case we use in the proof Figure 3.

of the main theorem.)
Suppose then that the above condition holds and that, by contradiction, the
orbit of x is recurrent, There exists a value ¢, sufficiently large such that the
orbit of x crosses @ at least 3 times for 0 <{¢ <{t,. The orbits of all points
sufficiently near = will have exactly the same property. So, we may choose
1, and the corresponding open set
A,, with 04, ~Q cu, ~Q, such
that u, crosses @ at least 3 times.
The segments of u, ~ @ are precisely
the intersections of @ with 94,.
Since there are at least 3 segments
as these, there must be two conse-
cutive ones such that @ enters 4,
at one of them and leaves A4, at
the other. Such thing, however,
cannot happen because those segments are equally oriented in ¢ and y,, on
the other hand, has its own orientation (see Figure 4).

The general case of (a) reduces to the first one as follows: suppose that only
ﬁnitely many of the p, satisfy our special condition with respect to Q. Neglec-
ting them, we may assume that no u, satisfies that condition. Then y, does not
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separate M so, cutting M along u,, we obtain a surface M, of smaller genus
than M, and the result is proved by induction on the genus g. (For ¢ = 0, it
is true because there are no recurrent orbits then.)

To prove (b), let ¢ > 0 be given. We try to find n, such that |t, —{,| <e
for all » > mn,. Take a rectangular neighborhood @ of z, such that u ~Q isa
segment and it takes a time < ¢ for any point to go from one end of @ to the
other by the flow £. Take also a tubular neighborhood V of the closed orbit yu,
not wider than €. Choose %, so large that, for n > n,, z, is close enough to z,
so that &(¢, z,) eV for 0 <t < 2¢,, that the orbit of x, hits @ for the first
time at t=1¢, where |t —1{,| <¢/2, and for the second time at t =1¢",
with |t" — 1, | <<¢/2 also. Consider initially the case where u is 2-sided, so V
is a cylinder. Clearly &(¢', z,) must lie on the same horizontal segment of ¢
as «,, since one of the semi-orbits of «, is trapped to remain forever in ¥ and if
the contrary were true, u, would never close. Therefore, it takes no more time
than ¢/2 for &(t', z,) toreach z, for the first time, so t' << ¢, <t + ¢/2 and
| t, —t, | < &. Now suppose that u is one-sided, so ¥ is a MoEB1US band whose
equator is u. Then &(¢, z,) returns to @ for the first time at a point on the
other side of u (relatively to z, in @) but, on the second return, it must close,
under penalty of remaining forever open. Therefore, lim ¢, = 2¢, in this case.
To conclude the proof we first observe that the inclusion pc {yeM;
y=Ilmy,, y,ep,, n=1,2,...} is obvious. Conversely, let y = lim y,,
Yn€ Y. Then y, = &(s,, z,), where 0 <s, <t,, so the sequence {s,} is
bounded. Passing to a convergent subsequence, we may write s,—s. Then
y =lm &(s,, z,) = &(s, 2)e .

For the next lemma, we consider the following situation: M is a 2-manifold
and I'is a boundary circle of M ; {u,} is a family of disjoint simple closed curves
in M, none of them touching the boundary of M. We assume that for each «

there exists a compact cylinder Ea c M, whose boundary circles are I" and
tty. For convenience, we let I' c Cy, but C,~ p, = @, so that each C,
is openin M. The point set boundary of C, in Mis u, and we write 9C,=u,

to denote this. Finally, C, = C_ v u, is the closure of C, in M.

Lemma 7. With the above notations:
(a) The family {C,} is linearly ordered by inclusion, unless M is a disc with
boundary I';

(b) The union of any given linearly ordered subfamily of {C,} is a cylinder C,
open in M, containing I', that may be written as C =UC,,C,c C, c ..-
where, for each n=1,2,...,C, = C, for some a;

(¢) If the point set boundary of C in M is a simple closed curve u then, either
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the closure C isa compact cylinder with boundary circles I'and u, or else C=M=
MogBIUS band.

Proof: (a) Let C, 5 Cg be chosen arbitrarily. Assume that M is not a disc.
Denote by h: 8 x [0, 1]+ C, a homeomorphism, with S = unit circle and
h(S* X 0) = I'. Let z = h(z,t) bea pointin C,~ Cg with te[0, 1] great-
est possible. Since C, ~ Cp is open, z must belong to ,, or to ug, but not to
both. To fix ideas, say zeug but x¢ p,. Then zeug~ C,. The connected set
ug, then, meets C; but is disjoint to g, = 9C,, so ugc C,. Observe that
pg cannot bound a disc D in €, since this would imply Cg v D to be a disc in
M, with boundary circle equal to I'. The disc (g v D would then be open and
closed in M, s0 M = Ugv D = disc, contrary to the assumption. Therefore

C,—pg= XY, the disjoint union of 2 connected components, with
I'cX,u, ¢ Y and 9X = 9Y = pg. The connected set (g intersects X
along I" but does not meet 39X = ug, so Cg = X < C,. If we had assumed
e p1,, the conclusion would be that €, « Cg. This proves statement (a).

To prove (b), change notation and write the given subfamily still as {C,}.

By LiNDELOF’S theorem, there exists a sequence C, , ..., Cy , ... such that
UG,,=UC,. Let C,=C, U...UC,,. Since the (s are linearly
ordered by inclusion, each C, = €, for some «. Clearly C; c C; — ... and

Uue,=udq,=2C. If C=C, for some n, then clearly C is a cylinder, open
in M. Otherwise, C, c C,,; for infinitely many values of n, so we may as
well assume that this happens for every n. Each C, +1 — O, isa closed cylinder.
Consider the standard cylinder K = {(z,y,2)eR3; 22+ 42 =1,z > 0}.
Let K,={(z,y,2)eK;z<n}, so K= UKn,E" c K,,;. Foreach n,let
k,: En —K, —>E',, — C,_; be a homeomorphism such that k, (f{n_r—Kn_O ==
:6%1 —C,—,. For convenience, let K,=C,=o. Now we define a
homeomorphism 4 : K — C, thus showing that C is a cylinder. We start by
letting % | K, =k, and proceed by induction. Supposing & : K, ~ 571 defined,
extend it to JZ'M — K, by putting h(z,y,n + 2) = k, [k 1k (2, y, ) +

n+41
+(0,0,2)],0 <z< 1. This definition fits with the previous one and

h: K ~ C is constructed.

Finally, we prove (c). Observe that, C' being open in M, @ = C ~ 9C =
=C~pu > I~ p, so u hasno points in common with I". Suppose first that
there exists a ‘collar’ A = §' x [0, 1] in M, with u = 8 x {0}. Write
4 =8 x (0, 1). A collar always exists when u touches the boundary M, or
Wwhen y is 2-sided in M. In the first case, any collar meets C and, in the second

¢ase, there are collars in both sides of u, but we shall always choose A in the
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side such that 4 ~ C +# @. Since 4 is connected and disjoint from pu, it

follows that A4 — C. Clearly we may choose A so narrow that A4, = S x
X (0,1} < C, so that » = 8! X {1} is a closed curve in C, disjoint from I
There are 2 a priori possibilities. The first one is that » bounds a disc in C.
This can’t really happen: take the one-point compactification of C. It is a
disc C = C v w, containing the disc A4, = 4, v w, which is also the one-
point compactification of 4,. These discs have in common the interior point
w, 80 04, =v cannot bound in ¢ — w. We are left with the second possi-

bility: » does not bound in €. Then » and I', together, bound a compact
cylinder B, such that A ~ B = v. Any sequence of points of ', tending to a
point in u = C — C, must eventually get inside 4, so ¢ = 4~ B and

therefore C is a compact cylinder, bordered by u and I'. Next, suppose that
w is one-sided in M . Then u does not touch the boundary of M . Take a tubular
neighborhood Vofu, V~2M = @ . Then V is a Moebius band, with boundary ».
V — p is connected, meets C but not u = 8C, so V < C. Then C=C v
is open and closed in M, so C = M is a 2-manifold with boundary I" and,
cutting M along x, one obtains a 2-manifold M’ with two boundary circles
u, I', such that omitting the circle u from M’ one obtains the cylinder C.
Hence M’ is a compact cylinder and M is a MoEBIUS band. This finishes the
proof of Lemma 7.

§ 4. Proot of Theorem A

We use induction on n. For n = 1, the theorem is contained in Lemma 4.
Let » > 1 and suppose that it has been proved for actions of R*. Consider
a continuous action ¢: RB® X M — M. Our first task is to establish the follo-
wing two auxiliary results:

Sublemma 1. Let G be the collection of all p-minimal sets in M. Either ¢
has a fixed point or else T is uncountable, and all but a finite number of its ele-
ments are circles (I-dimensional closed orbits of ¢) .

Proof: For every hyperplane Z — R" (through the origin), let ¢|{Z
denote the action of Z on M induced by restriction of ¢. By the inductive
hypothesis, ¢ | Z has at least one fixed point z in M. For each fixed point
z eM of theaction ¢ | Z, let K(z) denote the closure ofits g-orbit ¢ (R" X #).
All points in K (2) are left fixed by Z, so the orbit of every one of them is the
same as its orbit under any line through the origin of R®, provided that line is
not contained in Z. K (z) being closed and g¢-invariant, contains at least one
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¢-minimal set. Let J7°(Z) denote the collection of all p-minimal subsets of M
which are left pointwise fixed by Z. Given any 1-dimensional subspace [ < R*
not contained in Z, every u € J% (Z) is also a minimal set of the flow ¢ |,
induced by restriction of the action ¢ to the line /. We know that each 97 (Z)
is non-empty. Moreover, if Z, W are distinct hyperplanes (through the origin
of R") then T (Z) ~ G (W) =  for if these two collections had an element
o in common, each point zepu would be fixed under Z and under W. Since
R~ is spanned by Z and W, x would be a fixed point of ¢, contrary to the as-
sumption. Therefore T = U S (Z), where Z describes all the homogeneous
hyperplanes of R", is an uncountable collection. Moreover, 9% contains all
p-minimal sets. In fact, given a p-minimal set u, the orbit of no point z eu
may contain an interior point: otherwise, the point set boundary of the orbit
{which is not empty because M is not a torus) would be a proper, closed invar-
iant subset of the minimal set u. So, the orbit of zeu is 1-dimensional and,
consequently, the isotropy group of z contains a hyperplane Z. So does the
isotropy group of all other points of p, hence ue% (Z). Let I,,...,1,
denote the axis of R" and write 9%, = U{IZ(Z); Z ~ I, = 0}. Every set
1 € 7, is minimal under ;. So, by Lemma 5, the sets u € 7, are all circles,
except a finite number of them. But clearly 97 = 7 v ... v J,, because
& given hyperplane cannot contain all the axis of R*. Therefore, all sets in 97
are circles, with a finite number of exceptions. (Notice that if the genus of M
is zero, there are no exceptions.)

Sublemma II. Either ¢ has a fized point in M or else we may find a closed
I-dvmensional orbit of @, which s disjoint from the boundary circles of M and
does not bound a cylinder together with any of them.

Proof: Start with a boundary circle I'. Consider the collection {C,} of all
cylinders which are open in M, contain I" as one of their edges and such that the
point set boundary (relative to M) is 9C, = p,, a closed 1-dimensional orbit
of g. If M is not a disc, the collection {C,} is linearly ordered by inclusion
(Lemma 7). If M is a disc, we apply the HAUSDORFF maximal principle and,
changing notation, let {C,} stand for a maximal linearly ordered subfamily. At
any rate, by Lemma 7 again, the union C = UC, is an open cylinder, that
nay be written as ¢ = UC,, witheach C,=C, forsomexand C,c C,c ....
Moreover, we may conclude that C is a compact cylinder with edges I" and ,
Provided we show that its point set boundary is a closed curve u = 3C. In
order to do that we remark first that z edC if, and only if, z =lim z,,
Yoep, =00,,m=1,2,.... Clearly 9C is g-invariant and closed. Let
# < 9C be a p-minimal set. The isotropy group of (every point of) u contains a
tertain hyperplane Z . Choose a line [ through the origin of R*, which does not



108 Eron L. Lima

lie in the isotrophy group of any of the u,, orof yeither. Let ¢ : R X M~ M
be the flow induced by restriction of ¢ to the line I. The curves p, are orbits of
& and u is a minimal set of £. Now we use Lemma 6. By (a), no point of x may
have a recurrent orbit, so u is actually a circle. By (b), u = dC. The compact
cylinder C is such that its point set boundary (relative to M) x is disjoint from
the other boundary curves of M (since M is not a cylinder) and M —C is a
compact 2-manifold, homeomorphic with M, with u replacing I as a boundary
circle. M — C is invariant under ¢, and no closed 1-dimensional orbit of ¢
in M — C may bound a cylinder together with I". Repeat the same construc-
tion with all the other boundary circles of M. A manifold M’ c M is ob-
tained, which is homeomorphic with M, invariant under ¢ and no closed
1-dimensional g-orbit in ' may bound a cylinder together with any boundary
circle of M. But y(M') £ 0 so there is a closed 1-dimensional orbit » of ¢
in M’, obtained by the Sublemma I. Since 97 is infinite, » may be chosen
disjoint from the boundary circles of M’, so » proves Sublemma II.

The proof that ¢: R" x M — M has a fixed point will be given by a
second induction, now on the genus g of the manifold M. To start the induaction,
we prove this for a manifold of genus 0. Consider, in first place, the case M = D
wo prove this for a manifold of genus 0. Consider, in first place, the case
M = D = 2-disc. Assuming that ¢:R® X D— D does not have a fixed
point leads us to the conclusion of Sublemma II and this is obviously contra-
dictory when M is a disc. Next, take the case M = §2 = 2-sphere. Given
¢: R X 82— 82, choose one of the circles u c 8% given by Sublemma I.
There is a disc D < 82, bounded by u. D isinvariant under ¢. By the pre-
vious case, ¢ has a fixed point in D, hence in S2. The case of manifolds of genus
zero is completed by a third induction, this time on the number b of its bound-
ary circles. We have established it for & = 0 (sphere) and b = 1 (disc). It is
false for b = 2 (cylinder), when y(M)= 0, anyway, so we start this
induction with b = 3. Our manifold M is then a sphere with 3 holes or, as we
prefer to think of it, a disc with 2 inner holes. Sublemma IT provides us with
a closed 1-dimensional orbit of ¢ which, in this case, has to bound a disc in M.
Such disc is g-invariant and thus contains a fixed point. Now suppose that M
has b > 3 boundary curves and again take a closed 1-dimensional g-orbit v
given by Sublemma II. Considered as a plan JORDAN curve, » contains V'
boundary circles of M in its interior and " in its exterior, with b = b’ + b’
and b, b” > 2. Therefore, cutting M along v, wo obtain 2 compact 2-mani-
folds of genus zero, both with less boundary curves than M, both g-invariant
and none of them a cylinder. The induction hypothesis (on b) provides a fixed
point. This concludes the case g = 0.

We return now to the induction on the genus of M. Let g > 0, suppose the
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assertion proved for manifolds of genus < g and pick a curve v, provided by
Sublemma I1. Cut M along g. We either obtain a manifold of lower genus and
same EULER characteristic as M or a pair of manifolds, both with lower genus
and non-zero EULER characteristics, adding up to that of M. In either case,
the theorem is proved.

APPENDIX

The affine group of the line acts without fixed points on a disc

The affine group of the real line is the set G of all maps of the form
r—>ax + b, a >0, of R onto itself, with the group structure given by com-
position of maps. Abstractly, & is the set of all pairs (a, b) of real numbers,
such that a@ > 0, and the operation in @ is defined by (a, b)s{(c,d) =
= (ac, ad + b). G has a natural topology, which makes it homeomorphic
with the open right half plane, so it is a simply-connected 2-dimensional Lie
group. Its LiE algebra has a basis {e,, ¢,} for which the only non-zero bracket
product iz [e,, e;] = ¢,. In order to obtain an action of ¢ on a compact
manifold M, it suffices then to give a pair of vector fields X, ¥ on M, such
that [X, Y] = X.

In order to define such vector fields X, Y on the unit disc

D = {(x,y)eB?; 2* + y* < 1},

we start with the fields A, B on the plane R?, which are given by A(z, y) =
=(0,1) and B(z,y) = (z,y). Clearly [A4, B] = A. We shall then define
a diffeomorphism A : R*— int D, of the plane onto the interior of D. This
vields two vector fields X = h,{(4) and Y = h,(B) on int D. Finally, we
show that X and Y may be continuously extended to the boundary S! = 9D,
in such a way that X = 0 and Y is the unit vector tangent to S!. Then
[X, Y] = X all over D and nowhere X and Y vanish simultaneously. There-
fore, the action of G on D defined by X and Y has no fixed points.

The diffeomorphism 4 : R2— int D is given by the formula below, in which
we identify each (x, y)e R? with the complex number z = z 4 1y:

h(z) = (1—# exp [if(|z[)],

Where f: R R is a differentiable function such that f(f) = 0 for ¢ < 1 and

) = logt for t > 2. The geometrical meaning of & is better shown by its
€Xpression in polar coordinates:

h(oe'®) = o(L + )M exp [ip + if()], h(0) = 0.
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After computation, we arrive at the following expressions for X = h, (4)
and Y = h,(B) in the interior of the disc D :

Y (@) =200 —|z ) + iz,

i ) .
X (h(z)) = h(z)[;+ Izylz —= +-’/,z|2], =z +iy.

We see then that X and Y may be extended to the closed dise D, in such a
way that X(w) = 0 and Y (w) = tw for every weS. This is clear for Y.
As for X, just notice that if A (z)-> w,e S*, then z-> oo s0, in the expression
of X, the first factor is bounded, whereas each summand in the second factor
tends to zero.

As a corollary of the preceding construction, we obtain an action of G on the
sphere §% without fixed points. Just glue two copies of D along the boundary
and let @ act on each disc as before.
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