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In this paper,  we give the  details of our  research announcement  [5]. We 
are concerned with vector  fields X ,  Y . . . .  on a 2-manifold M .  These are said 
to commute i f  the  LIE bracket  IX,  Y] vanishes identical ly on M.  The  final 
result is t h a t  a ny  set of  pairwise commut ing  vector  fields on a compact  2-mani- 
fold with non-zero EUL~R characterist ic  has a common singularity.  

The proof  here presented is, in principle, the same tha t  was sketched in [5], 
except for style and  the correct ion of  a minor  mistake t h a t  was pointed  out  to 
us by  H. EDWARDS. The  organizat ion of the  proof  is such t h a t  the results of  [4] 
are also included, so t ha t  this paper  is ent i re ly  self-contained. We also single 
out, in w 2, some lemmas t h a t  seem to have  independent  interest .  

A finite collection of  commut ing  vector  fields on a compact  manifold M is 
equivalent to a differentiable act ion of an abelian LIE group on M .  The  nex t  
best thing to an abelian LIE group is a solvable one. The  group of affine trans- 
formations of the real line is the simplest possible solvable LIE group.  In  an 
appendix we show how this group can act  wi thout  fixed points on a 2-disc, 
hence on a 2-sphere. I t  is not  difficult to get fixed point  free actions of the affine 
group of the  line on a compac t  cyl inder  and on a torus.  We do not  know, however  
whether or not  i t  m ay  act  wi thout  fixed points on all compact  2-manifolds. I t  
goes wi thout  saying t ha t  it  would be ve ry  interest ing to  have theorems on 
common fixed points of  vec tor  fields for manifolds of  higher dimensions. 

I am grateful  to  S. SMALE for his manifold interest  in this work. 

1. Preliminaries 

All manifolds in this paper  are connected and m a y  have boundary .  The  
boundary of  a compac t  2-manifold M is a finite union of  disjoint  closed curves, 
which we call the boundary circles of  M.  Th rough o u t  this paper  we use freely 
folk theorems on the topo logy  of  2-manifolds. We refer to  [1] for explici t  
proofs of  these results. 

An action of  a topological group G on a space M is a continuous map 
~: G• such tha t ,  for all g, he G and xe M,  ~(gh, x) -~ q~(g, ~0(h, x)) 
and ~ (e, x) --~ x ,  where e E G is the  neut ra l  element.  When  G is a LIE group 
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and M is a differentiable manifold one has also the  not ion of a differentiable 
action. A flow is an act ion ~ : R • M-->M of  the  addi t ive  group of  the reals. To 
give a differentiable flow on a compact  manifold M is equivalent  to give a 
differentiable vec tor  field on M (with the addit ional  condit ion tha t ,  if  M has a 
boundary ,  the  field mus t  be t angen t  to  it). We shall tac i t ly  assume this condi- 
tion, whenever  we refer  to vec tor  fields. 

Le t  X be a C 1 vector  field on a compact  manifold M and  let ~: R •  M - ~ M  
be the  corresponding flow. Given xE M ,  one has X ( x )  = 0(x  is a singularity 
of  X) if, and only  if, ~(s, x) = x for all s ER, t ha t  is, x is a fixed point  of  the 
flow ~. Le t  Y be ano ther  vec tor  field on M ,  generat ing a flow ~. The  condition 
t ha t  the  LIE bracket  [X,  Y] be identical ly zero means t h a t  ~(s,  ~(t,  x)) == 
= v ( t ,  ~(s, x)) for all s, t e R  and all x e M .  Then  we say t h a t  the flows 
~, ~ commute and this is why  X and Y are said to  commute  when [X, Y] - -  0. 
The pair  X ,  Y generates,  then,  an act ion ~ : R 2 • M - ~  M of the  additive 
group of  the plane on M ,  defined b y  ~( r ,  x) --~ ~(s, ~t(t, x)) ~-- v ( t ,  ~(s, x)) 
for  x EM and  r = (s, t) ER ~. A poin t  x ~M is fixed under  ? if, and only if, 
i t  is a common s ingular i ty  of  the  commut ing  vec tor  fields X and Y, tha t  is, 
X ( x )  =- Y ( x )  = O. Similarly, any  finite number  of  commuting  vector  fields 
X 1 . . . . .  X n on a compact  manifold M generate  an action ~ : R ~ • M - ~ M .  

Our main resul t  is: 

Theorem A. Every  (continuous) action o/ the additive group R ~ on a compact 

2-mani/old M ,  with )~ (M) ~ O, has a fixed point. 
Above, Z (M) denotes  the  EULER character is t ic  of  M.  As a consequence:  

Theorem B. Let X 1 . . . . .  X ,  be pairwise commuting vector fields o /c lass  C 1 
on a compact 2-mani/old M ,  with )~ (M) ~ O. There exists a point x ~ M  such 

that X l (x)  . . . . .  X~ (x )  =- O. 
I t  was remarked  to  me by  R. ELLIS tha t  the  above result  m ay  be extended 

to  an a rb i t r a ry  collection {X~} of  commut ing  vec tor  fields on a compact  
2-manifold M ,  with g (M) r 0. In  fact ,  for eve ry  finite n o n -em p ty  subset 
A = {a 1 . . . . .  an} of  the  indices a,  let  iv (A) be the  set of common singularities 
of  the  vec to r  fields X ~ ,  . . . ,  X~n. B y  Theorem B ,  each F (A) is a closed non- 
e m p t y  subset  of  M .  Clearly F(A~) . . . . .  F ( A k )  ~-- F ( A  1 . . . . .  Ak) @ ~ ,  
so the  fami ly  {F (A)} has the  finite intersect ion proper ty .  Since M is compact, 
i t  follows t h a t  F ~ n F ( A )  is non-empty .  B u t  each point  x e F  is a common 

A 
singular i ty  of  all the  vec tor  fields Xa. Evident ly ,  the  same m e th o d  shows the 
existence of  a fixed po in t  for  any  act ion ~ : G • M -~ M of a topological 
abelian group G which is genera ted  by  subgroups isomorphic to  EUCLIDean 
spaces R n. 

We conclude this in t roduc t ion  with a few definitions. 
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Given an act ion ~v : G • M -+ M of the  topological  g roup  G on the  space M ,  
the orbit o f a p o i n t  x e M  is the  set  ~v(G x x)----- {~v(g, x) e M ; g ~ G } .  

The isotropy group of a poin t  x e M  is the  set  G~ --~ {g e G ; ~ (g, x) ~ x}. 
I t  is clearly a closed subgroup  of  G and  the  m a p  g -+ W (g, x) induces, b y  passage 
to the quot ient ,  a 1-1 cont inuous  m a p  of  the  homogeneous  space G/G~ onto  
the orbi t  of  x.  W h e n  T is a flow, the  i so t ropy group of a poin t  m a y  be {0}, a 
discrete group  {0, =t: to, -4- 2 to . . . .  ; t o > 0} or the  whole real line. I n  the  first 
case, x has a non -compac t  orbi t ;  in the  second case, the  orbi t  of  x is a s imple 
closed curve,  and  we say  it  is a periodic orbit, of period to, and  in the  th i rd  case 
x is a fixed point .  A set  X c M is said to be invariant under  ~ if  ~ (g, x) E X 
for every  g eG and  every  x e X .  A minimal  set under  ~ is an  invar ian t ,  non- 
empty ,  closed subset  X c M which contains  no proper  subset  wi th  these 3 
properties.  Les ~ : R • M -+ M be a flow and  x a poin t  of  M .  The  co-limit set 
of x is the  set  of  all points  y e M which can be wr i t t en  as y z l im ~ (tn, x) 

n 

with tn -+ -f- ~ .  The  co-limit set  of  eve ry  point  is a closed, invar ian t ,  subset  
of M and, if  M is compac t ,  i t  is also n o n - e m p t y  (and connected).  The  orbi t  of  x 
under the  flow ~ is said to be recurrent if  i t  is no t  co mpac t  and  is conta ined  in the  
~o-limit set  of  x.  A n y  orbi t  in a min ima l  set  of  a flow is e i ther  the  whole set  or is 
recurrent. When  the  group  G is abelian,  then  eve ry  point  in the  same orb i t  has  
the same i so t ropy  group.  Also, i f  tL is a min imal  set  re la t ive  to  the  act ion of an  
abelian group G, every  po in t  x e/~ has  the  same i so t ropy  group.  

Finally,  we use the  t e rmino logy  '~v-invariant' ,  ' t - o rb i t ' ,  '~v-minimal', etc., as 
obvious abbrev ia t ions ,  whenever  there  are more  t h a n  one act ion in the  argu- 
ment. 

2. Some lemmas 

In  t h i s sec t ion ,  we ga the r  toge the r  a few general  facts,  for  use in the  p roof  
of our ma in  theorem.  Some of t h e m  are well known,  some are new, bu t  all 
have a cer ta in  independen t  interest .  

Lemma 1. Let qD : G x M --> M be a continuous action o] a simply-connected 
topological group G on the space M .  Let p : (M* ,  x*) ---> (M,  x0) be any  covering 

space o / M .  There exists a unique continuous action q~* : G • M *  -+ M *  that 
covers q~, in  the sense that the diagram below is commutative: 

G • M *  ~v* . M *  

G x M  q~ , M  . 
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Proof: Let the subscript ~ denote the induced homomorphism on the 
fundamental group. Write / ~  ~0 (id • p). The simple connectivity of G 
implies tha t  the image of f .  :~I(G • M*) -~  ~I(M) equals the image of 
p .  : ~I(M*) --~ ~I(M). So, by covering space theory, there exists a unique map 
~* : G • M* -~ M*, making the above diagram commutative and such that 
~* (e, x*) * --~ xo, e--~ neutral element of G. Now we show tha t  ~* is an 
action. First ~* (e, x*) = x* for all x* EM*, because both maps a : x* 
-~q~*(e, x*) and fl: x*-~  x* cover the identity map of M and ~(x*) ~ x o. 
Second, q~* (g , ~* (h, x*)) -~ qg* (gh, x*) for all g, h �9 G and x* EM* , because 
bothmaps  2 , # : G  • G • M*-->M*, definedby 2 ( g , h , x * ) : c f * ( g , ~ * ( h ,  x*)) 
and /~ (g, h, x*) ~ q~* (gh, x*) cover the map v : G • G • M - ~  M,  given by 
~ ( g , h , x ) : q ~ ( g ,  qJ(h,x)) : ~ f ( g h ,  x) ,  and ~(e,e ,  xo* ) : # ( e , e , x 0 *  ) ~ - x  o. 

Remark: Given x* EM*, and x -~ p(x*) ,  then x is a fixed point of 
if, and only if, x* is a fixed point of ~ .  

The consequence of the preceding lemma is that,  for our purposes, all mani- 
folds may be taken to be orientable. In fact, if ~ : G • M -~ M is an action 
on a non-orientable manifold M, let p : M* -~ M be its orientable 'double 
covering.' Lift ~ to an action of G on M*. (In our case, the group G is a vector 
space, so it is always simply-connected.) M* is compact if M is, and g (M*) 

2 -z (M ), so x(M*) :~ 0 if i~(M) r 0. Of course, the reduction to M 
orientable is not really essential but simplifies the consideration of cases. This 
orientability shall be assumed in the proof of the main theorem, but not in its 
statement, nor in any of the following lemmas. 

Lemma 2. Let cf : G • M--~ M be a continous action o / a  topological group 
G on a space M .  Every compact invariant subset X c M contains a minimal set. 

Proof: ZORn. 

Let  ~ : R  • M - ~ M  he a flow on a 2-manifold M,  a n d l e t  y E M .  Alocal 
cross-section of ~ at y is a subset S of M,  homeomorphic to a compact interval 
[--  a,  -~ a], containing y, and such tha t  for some ~ ~ 0, the map [--  ~, ~ e] 
• S -~  M,  given by (t, x) --~ ~ (t, x) is a homeomorphism onto the closure of 
an open set containing y. The image of this homeomorphism is called a rectan- 
gular neighborhood of y (relative to the flow ~). The point y is an end point of 
if, and only if, y is in the boundary of the manifold M. 

Lemma 3. Let ~ : R • M --> M be a flow on a 2-mani]old M and let y ~M 
be a point whose isotropy group is discrete. There exists a local cross-section o/ 
at y (so y has a rectangular neighborhood). 

Proof: For a differentiable flow ~, the cross-section S may be taken as any 
small transversal segment to the vector field of ~ (see [2], page 392). For an 
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arbi t rary  flow, the  existence of  S was established by  H. WHITNEY (see [8], pages 
270 and 260). 

Lemma 4. Every flow ~ : R x M---> M on a polyhedron M ,  with EULER 
characteristic z ( M )  :/= O, has a fixed point. 

ProoI : This is a consequence of  the LEFSCHETZ fixed point  theorem,  ac- 
cording to which every  cont inuous map / : M -~ M, homotopie  to the  ident i ty ,  
has a fixed point.  For  n =  l ,  2, 3 . . . . .  let [ ~ : M - + M  be defined b y  
]~(x) ~ ~(1/2 n, x) .  The  set F .  of  all fixed points of/,~ is compact ,  non-empty ,  
and F1 D F~ D . . . .  Then  F----- n F n  =/=;~. Clearly F is the set of fixed 
points of the  flow $. 

We say t ha t  a minimal  set of  a flow is non-trivial is i t  is not  (homeomorphic  
to) a point,  a circle or a torus.  DENJOY [3] gave an example  of  a flow of  class C 1 
on the torus,  with a non-tr ivial  minimal set. A modification of this example  
gives non-tr ivial  minimal  sets on any  2-manifold of  higher genus [6]. According 
to a theorem of A. SCFrWARTZ [7] and A. DENJOY [3], a flow of class C 2 on a 
2-manifold does no t  admi t  non-tr ivial  minimal sets. Fo r  flows tha t  are mere ly  
continuous the best  resul t  abou t  non-tr ivial  minimal  sets is the  lemma below, 
which was communica ted  to  me by  M. PEIXOTO. I t  is a generalizat ion of the  
classical POINCAR~-BENDIXSON theorem:  

Lemma 5. A flow ~ : R • M--> M on a mani/old M o / f in i te  genus g has 
at most 2g - -  1 distinct non-trivial min imal  sets. 

ProoI: Observe t ha t  'dis t inct '  and 'disjoint two by  two'  are synonimous for 
minimal sets. We m a y  assume t h a t  M is or ientable because its double covering 
M* would have the  same genus, and ~ on M* would admi t  a t  least as m a n y  
non-trivial minimal  sets as ~. 
The proof  goes by  induct ion 
on the genus g. A pre l iminary 
remark: the  curves in the 
boundary of  M are submani-  
folds (with the  induced topo-  
logy) and are orbits of  ~, 
except when  ~ has a fixed 
point in one of  them,  so every  
non-trivial minimal  set # lies 
in the inter ior  of  M.  Now 
consider g = 0. Then  we 

b' 

a t f  

Figure 1. 

may assume M H R ~, and L e m m a  5 is the  classical POINCARI~-BENDIXSON 
theorem: assuming # H M to be a non-tr ivial  minimal  set, we choose x~/~ 
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and take  a rec tangular  neighborhood Q around x.  The orbi t  of  x mus t  re turn  
to  this neighborhood and t hen  it  gets t r apped  in the  planar  region bounded 
by the  JORDA~ curve a a'  b' a .  The  w-limit set of  x would be a proper  in- 
var ian t  closed subset of  # ,  a contradict ion.  

Assume now tha t  g > 0 and tha t  the  lemma has been proved  for all surfaces 
of  genus < g. Given a flow $ : R • M -~ M on a surface of  genus g, suppose, 

Figure 2. 

by  contradict ion,  t ha t  /~ . . . . .  F~2g 
are 2g dist inct  non-tr ivial  minimal 
sets of  ~ in M .  Le t  Q be a rectan- 
gular neighborhood of  a point  x c/~2 
(refer to  Figure 1). Choose Q so small 
t ha t  it  does not  intersect  the remain- 
ing minimal  sets # ~ , i  ~ 2 g - - 1 ,  
and  Q ~ 0 M ~ - ~ .  
Consider the following homeomor-  
phism h : Q -~ Q. I t  is the  ident i ty  
on all sides of  Q bu t  the vertical 
r ight  side, where h is l inear and 

h(a ' )  -~ b'.  I n  the  inter ior  of  Q, h is defined by  mapping l inearly each hori- 
zontal  segment  y y '  onto  the  segment  y h ( y ' ) .  

We define a new flow ~' : R • M - +  M by  requiring tha t ,  outside Q, the 
orbits  of ~' are the same as those of  $, and t raversed  in the  same way.  Inside 
Q, the  orbits of  ~, are the images by  h of  the s ( I t  would be rather  
tedious bu t  no t  hard  to  describe ~' formally.)  Under  the new flow ~', the point 
a has a closed orbi t  y .  Observe also t h a t  / z l , . . . ,  #2g-1 are still minimal  sets of ~'. 

The  curve y cannot  separate  M : if  this happened,  the closed curve a a'  b' a, 
o f  Fig. 1, would also separate  M and,  arguing wi th  ~, this would lead to a 
contradic t ion,  just  as in the case of  genus zero. Therefore,  by  cut t ing M along 
y,  we obtain one manifold of  genus g - -  1, on which the flow ~' is defined and 
admi ts  a t  least  the non-tr ivial  minimal sets /~1 . . . . .  /~2~-~, a contradiction,  
since 2g - -  1 > 2(g - -  1) - -  1. This concludes the  proof  of  L e m m a  5. 

Rema rk :  I t  was ac tua l ly  p roved  above  tha t ,  in a manifold of genus g, there 
are a t  most  2 g -  1 recur ren t  orbi ts  with pairwise disjoint closures. (In 
part icular ,  the re  are no recur ren t  orbits  in a manifold of  genus zero.) Notice 
t h a t  this resul t  gives in format ion  also in the differentiable case, since recurrent  
orbi ts  exist  even  for C c~ actions. 

L e m m a  6. Let ~ : R • M - +  M be a flow on a 2-mani/old M .  Suppose that 
x e M  is such that x ~ l im xn where each x n has a closed orbit / ~ ,  o/period 

t , .  Then: 
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(a) 1[ the genus o / M  is finite, the orbit o / x  cannot be recurrent: 

(b) I / x  has a closed orbit ix, o /per iod  to, one mus t  have l im t,~ ~-- a �9 to(a ~ 1 or 

2, according to whether ix is two-sided or one-sided in  M ) ,  and # = {y EM;  
y --:- lira yn, y ,  Eix,, n = 1, 2, 3 . . . } .  

Proof:  To prove (a) let  Q be a rectangular  neighborhood of  x.  Clearly no 
boundary point  of M m a y  have a recurrent  orbit ,  so we m ay  assume t h a t  Q is 
disjoint f rom the bound- 
ary of M. Consider first 
the special ease in which, 
for infinitely m a n y  val- 
ues of n,  there  exists an 
open set A n c M whose 
point set boundary  aA,  
satisfies the condit ion 
~A,  ~, Q c/~,~ ~, Q. (For 
instance, if #n separates 
M this s i tuat ion occurs. 
This is ac tual ly  the  only 
case we use in the  proof  
of the main theorem.)  

l 
:::) 

Q 

0r 

/ / I  / /  / /  / / : : ~ / / / / / / / /  / 
\ \ \ \ \ \ \ \ \  ~ \  ~ , . \ \ \ \ \  f 

t 

Figure 3. 

Suppose then  t ha t  the above condit ion holds and tha t ,  by  contradic t ion,  the 
orbit of x is recurrent .  There  exists a value t o sufficiently large such t h a t  the 
orbit of x crosses Q at  least 3 t imes for 0 ~ t ~< t 0. The orbits of all points 
sufficiently near  x will have  exac t ly  the same proper ty .  So, we m a y  choose 

Figure 4. 

Ixn and the  corresponding open set 
An, with a A n ~ Q c # n  ~ Q ,  such 
t ha t  Ixn crosses Q a t  least 3 times. 
The  segments of  Ixn ~ Q are precisely 
the intersections of  Q with aAn. 
Since there  are at  least 3 segments 
as these, there  mus t  be two conse- 
cut ive ones such t h a t  Q enters  A ,  
a t  one of  them and leaves A .  a t  
the  other .  Such thing,  however,  

cannot happen  because those segments are equal ly  or iented in Q and  # , ,  on 
the other hand,  has its own or ienta t ion  (see Figure  4). 

The general  case of  (a) reduces to  the  first one as follows: suppose t h a t  only 
finitely m a n y  of the  #n sat isfy our  special condi t ion wi th  respect  to  Q. Neglec- 
ting them,  we m a y  assume t h a t  no IX~ satisfies t ha t  condition.  Then  IX1 does no t  
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separate  M so, cut t ing  M a long  #1, we  obta in  a surface M1, of  smaller genus 
t han  M ,  and the  resul t  is p roved  by  induct ion on the  genus g. (For g ~ 0, it 
is t rue because there  are no recur ren t  orbits then.)  

To prove  (b), let  e > 0 be given. We t r y  to find n o such t h a t  ] t n - -  t01 < 
for all n ~ n 0. Take  a rec tangular  neighborhood Q of  x,  such t h a t  # ~ Q is a 
segment  and i t  takes  a t ime ~ e for any  point  to go from one end of  Q to  the 
other  by  the flow ~. Take  also a tubular  ne ighborhood V of  the  closed orbi t /~,  
no t  wider t ha n  Q. Choose n o so large that ,  for n > no, xn is close enough to  x, 
so tha t  ~(t, x~) EV for 0 ~< t ~ 2t o, t h a t  the  orbi t  of  x~ hits Q for the  first 
t ime a t  t - --- t ' ,  where [ t ' - - t 0 1 < E / 2 ,  and for the  second t ime at  t z t", 
with  I t" - -  t o I <e /2  also. Consider init ially the  case where /~ is 2-sided, so V 
is a cylinder. Clearly ~(t', x~) mus t  lie on the  same horizontal  segment of  Q 
as x n, since one of the  semi-orbits of  xn is t r apped  to remain forever  in V and if 
the  con t ra ry  were true,/~n would never  close. Therefore,  it  takes no more t ime 
t h a n  e/2 for ~(t', Xn) to reach  x~ for the first time, so t ' <  t~ < t ' +  e/2 and 
I t~ - -  t o I < e. Now suppose t h a t  # is one-sided, so V is a MOEBIUS band whose 
equa tor  is # .  Then  ~ (t, x~) re turns  to  Q for the  first t ime a t  a point  on the 
o ther  side of  # (relatively to  x~ in Q) but ,  on the  second re turn,  i t  mus t  close, 
under  pena l ty  of  remaining forever  open. Therefore,  lim t. -=-- 2 t o in this case. 
To conclude the  proof  we first observe t ha t  the  inclusion /z c {y EM; 
y ~ lim y~, y ~ / ~ , ,  n = - 1 ,  2 . . . .  } is obvious. Conversely, let y-- - - l im y, ,  
y ~ # ~ .  Then  yn ---- ~(s~, x~), where 0 ~< s~ ~< t~, so the sequence {s,} is 
bounded.  Passing to a convergent  subsequence,  we m a y  write s.--> s. Then 
y = lim ~(sn, x~) = ~(s, x ) ~ # .  

For  the  nex t  lemma,  we consider the  following si tuat ion:  M is a 2-manifold 
a n d / 7  is a bounda ry  circle of  M ;  (#~} is a fami ly  of disjoint simple closed curves 
in M ,  none of  t he m touching the bounda ry  of  M .  We assume th a t  for each a 

there  exists a compac t  cylinder 0~ c M ,  whose bounda ry  circles are F and 
/z~. For  convenience,  we let  F c C~, bu t  C~ ~, /~  ---- ~ ,  so t h a t  each C~ 
is open in M .  The  point  set b o u n d a r y  of C~ in M is #e and we write OCa=#~ 

to  denote  this. Final ly,  C~ = C~ v/z~ is the  closure of  C~ in M .  

L e m m a  7. Wi th  the  above  nota t ions :  

(a) The [amily {C~} is linearly ordered by inclusion, unless M is a disc with 
boundary I'; 

(b) The union o[ any given linearly ordered sub/amily o/ {C~} is a cylinder C, 
open in 31, containing 1~, that may be written as C = U C~, C~ c C, c . . .  
where,/or each n = 1, 2, . . . ,  C~ = C~ /or some c~; 

(e) I[ the point set boundary o] C in M is a simple closed curve # then, either 
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the closure C is a compact cylinder with boundary circles F and #,  or else C ~ M ---- 
MOEBI~S band. 

Prool: (a) Le t  C~ =~ Ct~ be chosen arbi trar i ly.  Assume tha t  M is not  a disc. 

Denote b y  h : S 1 • [0, 1] --> C~ a homeomorphism,  with S 1 : uni t  circle and  

h(S 1 • 0 ) ~ / 1 .  Le t  x - ~ h ( z , t )  b e a p o i n t i n  C ~ C t ~  with t~ [0 ,  1] great-  
est possible. Since C~ ~ Ct3 is open, x mus t  belong to /,~, or to /~t3, bu t  no t  to 
both. To fix ideas, say x ~/~t~ bu t  x r #~. Then  x E/zt3 ~ C~. The connected set 
#~, then,  meets  C a bu t  is disjoint to /~ = OCt, so #~ c C~. Observe t h a t  
/zt3 cannot  bound  a disc D in C~ since this would imply  C~ - D to  be a disc in 
M, with boundary  circle equal  to  F .  The  disc C~ ~ D would then  be open and 
closed in M ,  so M ----- Ct~ ~ D ~ disc, con t ra ry  to  the assumption.  Therefore  

C~--#t~ ~ X ~ Y, the  disjoint union of 2 connected components ,  with 
F c X , / ~  c Y and OX----- OY = / ~ .  The connected set C~ intersects X 
along F bu t  does no t  meet  OX = / ~ ,  so Ct~ c X c C~. I f  we had assumed 
x �9 #~, the conclusion would be t ha t  C~ c Ct~. This proves s t a t emen t  (a). 

To prove  (b), change no ta t ion  and write the given subfamily  still as {C~}. 
By LINDELOF'S theorem,  there  exists a sequence C~, . . . . .  C ~  . . . .  such t h a t  
t A C ~ -  [AC~. Le t  C , = C ~  [ J . . .  (3 C ~ .  Since the  C~'s are l inearly 
ordered by  inclusion, each C~ = C~ for some a .  Clearly C~ c C2 c . . .  and  
(J C. = [3 C~ = C. I f  C ~ C~ for some n, t hen  clearly C is a cylinder,  open 

in M.  Otherwise, C~ c C,+1 for infinitely m a n y  values of  n ,  so we m a y  as 

well assume t ha t  this happens for eve ry  n.  Each  C,+~ - -  C~ is a closed cylinder.  
Consider the s tandard  cylinder K = {(x, y ,  z) eR3; x 2 q- y2 = l ,  z ~ 0}. 

Let K , = { ( x , y , z )  e K ; z < n } ,  so K =  [AK~,K~ c K,+ 1. For  e a c h n ,  let  

k, : K~ - -  K . _  1 - ~ C ,  - -  C,_ 1 be a homeomorphism such t h a t  k~ (h:~_l--K~_l) -~ 

= C ~ - 1 - - C ~ - 1 .  F o r  convenience,  let K 0 : C O = ~ .  Now we define a 
bomeomorphism h : K ~ C, thus  showing t ha t  C is a cylinder.  We s ta r t  b y  

letting h [ K~ = k~ and proceed by  induction.  Supposing h : /~ ,  ~ C~ defined, 

extend i t  to  K~+~ - -  K~ by  pu t t ing  h(x ,  y,  n -k z) -= k~+~[k-~h(x ,  y,  n) -k 
+ (0, 0, z)], 0 ~ z ~ 1. This definition fits with the  previous one and 
h: K ~ C is constructed.  

Finally, we prove  (c). Observe tha t ,  C being open in M ,  ~ = C ~ 0C ---- 
-~ C ~ p ~ ]7 ~ # ,  so # has no points in common with / ' .  Suppose first t h a t  

there exists a 'collar'  A = S  1 •  [0, 1] in M ,  with / , - - - -S ~ • {0}. Wri te  
A ~ S~ • (0, 1). A collar always exists when # touches  the  b o u n d a ry  M ,  or 
when # is 2-sided in M. In  the  first case, any  collar meets  C and, in the  second 

ease, there  are collars in bo th  sides of  # ,  bu t  we shall a lways choose A in the  
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side such t ha t  A ~ C :/: ~ .  Since A is connected and disjoint  f rom ~u, it 

follows tha t  A c C. Clearly we m a y  choose A so narrow th a t  A 1 --~ S 1 • 
• (0, 1] c C, so t ha t  v----S 1 • {1} is a closed curve in C, disjoint f rom F.  
There  are 2 a priori possibilities. The first one is t h a t  v bounds a disc in C. 
This can ' t  real ly happen :  take  the one-point  compactif icat ion of  C. I t  is a 

disc C ~-- C ~ co, containing the  disc A1 --~ A1 ~ co, which is also the  one- 
point  compactif icat ion of A~. These discs have in common the interior  point 

oJ, so aA 1 ~- v cannot  bound in C --~o.  We are left  with the second possi- 
bi l i ty:  v does no t  bound in C. Then  v and  / ' ,  together ,  bound a compact  

cylinder B ,  such t ha t  A ~ B : v. Any  sequence of  points of C, tending to a 

point  in / ~ : C - - C ,  mus t  eventual ly  get  inside A,  so C : A  ~ B  and 

therefore  C is a compac t  cylinder, bordered by  /~ and F .  Next ,  suppose that  
/~ is one-sided in M .  Then  # does not  touch the  boundary  of  M.  Take  a tubular  

neighborhood V o f # ,  V ~ a M ~ ;~. Then  V is a Moebius band,  with boundary  v. 

V - - / ~  is connected,  meets  C bu t  not  / ~  aC,  so V c C. Then  C :  C - / ~  

is open and closed in M ,  so C ~ M is a 2-manifold with boundary  F and, 
cut t ing M along/~,  one obtains a 2-manifold M'  with two boundary  circles 
/~, F ,  such t ha t  omi t t ing  the  circle # f rom M'  one obtains the cylinder C. 
Hence  M'  is a compact  cylinder and M is a MOEBIUS band.  This finishes the 
proof  of L e m m a  7. 

w 4. Proof of Theorem A 

We use induct ion on n .  For  n ----- 1, the theorem is contained in Lem m a  4. 
Le t  n > 1 and suppose t ha t  it  has been proved  for actions of  R ~-1. Consider 
a cont inuous act ion ~ : R ~ • M - ~  M.  Our first task  is to  establish the follo- 
wing two auxi l iary  results:  

Sublemma I. Let ~?C be the collection o /a l l  q~-minimal sets in M .  Either 
has a fixed point or else ~ is uncountable, and all but a finite number o/ i ts  ele- 
ments are circles (1-dimensional closed orbits o/ ~). 

Proof :  F o r  eve ry  hyperp lane  Z c R n ( through the  origin), let  ~ I Z  
denote  the  act ion of  Z on M induced by  restr ict ion of ~. By  the  inductive 
hypothesis ,  ? l  Z has a t  least one fixed point  z in M.  For  each fixed point 
z e M  of the  act ion ~ I Z ,  let K(z)  denote  the  closure of its ~-orbi t  ~ (R ~ • z). 
All points  in K (z) are left  fixed by  Z, so the  orbi t  of  every  one of  t hem is the 
same as its orbi t  under  a n y  line th rough  the  origin of  R n , p rov ided  t h a t  line is 
not  con ta ined  in Z.  K(z)  being closed and  ~-invariant ,  contains a t  least one 
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~-minimal set. Le t  ~ ( Z )  denote  the  collection of all q-minimal  subsets of  M 
which are left  pointwise fixed by  Z. Given any  1-dimensional subspace l c R ~ 

not contained in Z,  every  /~ ~ ~g ' (Z)  is also a minimal set of  the flow 99 I l ,  
induced by  restr ict ion of the  action ~ to the line l. We know th a t  each ~-)'C(Z) 
is non-empty.  Moreover, if Z,  W are dist inct  hyperplanes  ( through the  origin 
of R n) then  ~ ' ( Z )  ~ ~ 'C(W) --~ ~ for if these two collections had an  e lement  
# in common,  each point  x E/~ would be fixed under  Z and under  W. Since 
R n is spanned by  Z and W, x would be a fixed point  of  ~, con t ra ry  to  the as- 
sumption. Therefore  ~ ~ U DFC(Z), where Z describes all the  homogeneous 
hyperplanes of R ", is an uncountable  collection. Moreover, DYE" contains all 
~-minimal sets. In  fact,  given a q-minimal  set # ,  the orbi t  of  no point  x E# 
may contain an interior  point :  otherwise, the  point  set boundary  of the orbi t  
(which is no t  e m p t y  because M is no t  a torus) would be a proper,  closed invar-  
iant subset of the minimal  set /~.  So, the orbi t  of  x ~/~ is 1-dimensional and,  
consequently, the isot ropy group of  x contains a hyperp lane  Z. So does the 
isotropy group of  all o ther  points of # ,  hence /; e DTt (Z). Le t  11 . . . . .  l,, 
denote the  axis of R ~ and write D]/" i = U {D?~'(Z) ; Z ~ I i --~ 0}. E v e r y  set 
/~ E ~--/'i is minimal  under  l~. So, b y  L e m m a  5, the sets /x e D2~" i are all circles, 
except a finite number  of them.  B u t  clearly ~ --  ~ 1  . . . . .  ~ ,  because 
a given hyperp lane  cannot  contain all the  axis of R ~. Therefore,  all sets in D?~ 
are circles, with a finite number  of  exceptions.  (Notice t h a t  if  the genus of M 
is zero, there  are no exceptions.)  

Sublemma II. Either qJ has a fixed point in M or else we may find a closed 
I-dimensional orbit o/of,  which is d is jo int /rom the boundary circles o] M and 
does not bound a cylinder together with any o/ them. 

Proof: S ta r t  wi th  a bounda ry  circle F .  Consider the  collection {C~} of  all 
cylinders which are open in M ,  c o n t a i n / '  as one of  their  edges and  such tha t  the  
point set bounda ry  (relative to M) is 0Ca = tt~, a closed 1-dimensional orbi t  
of ?.  I f  M is not  a disc, t he  collection {C,} is l inearly ordered by  inclusion 
(Lemma 7). I f  M is a disc, we apply  the HAUSDORFF maximal  principle and,  
changing nota t ion,  let  {Ca} s tand  for a maximal  l inearly ordered subfamily.  At  
any rate, by  L e m m a  7 again, the union C = U C~ is an open cylinder,  t h a t  
1nay be wri t ten  as C ~-- U Cn, with each C~ - -  C~ for some ~ and  C~ c C2 c . . . .  

Moreover, we m a y  conclude tha t  C is a compac t  cyl inder  with edges F and # ,  
provided we show t h a t  its point  set boundary  is a closed curve  # ~ 0C. In  
order to do t ha t  we r emark  first t h a t  x r 0C if, and only if, x = lim x~, 
x~ e #~ ~ OC~, n ~- 1, 2 . . . . .  Clearly aC is q- invar iant  and  closed. Le t  
/.~ c aC be a ~-minimal set. The  i so t ropy group of  (every point  of) # contains a 
certain hyperp lane  Z.  Choose a line 1 th rough  the  origin of  R" ,  which does no t  
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lie in the  i so t rophy  group  of  a n y  of  the  #~, or of  ~ either.  Le t  ~ : R • M -~ M 
be the  flow induced b y  rest r ic t ion of  ~ to the  line 1. The  curves ~ are orbi ts  of 

and  ~ is a min ima l  set  of  ~. Now we use L e m m a  6. B y  (a), no po in t  of  ju m a y  
have  a r ecur ren t  orbit ,  so # is ac tua l ly  a circle. B y  (b), t~ ~ aC .  The  compac t  
cyl inder  C is such t h a t  its po in t  set b o u n d a r y  (relat ive to M) # is disjoint  f rom 
the  o ther  b o u n d a r y  curves of  M (since M is not  a cylinder) and  M - -  C is a 
c o m p a c t  2-manifold,  homeomorph ic  wi th  M ,  wi th  ~ replacing F as a bounda ry  
circle. M - - C  is i nva r i an t  under  ~,  and  no closed 1-dimensional orbi t  of  
in M - -  C m a y  bound  a cyl inder  toge the r  wi th  F .  R e p e a t  the  same construc- 
t ion wi th  all the  o ther  b o u n d a r y  circles of  M .  A manifo ld  M '  c M is ob- 
ta ined,  which is homeomorph ic  wi th  M ,  inva r i an t  under  ~ and  no closed 
1-dimensional  ~-orbi t  in M '  m a y  bound  a cyl inder  toge ther  wi th  a n y  boundary  
circle of  M .  B u t  X (M') =/= 0 so there  is a closed 1-dimensional orbi t  ~ of  
in M ' ,  ob ta ined  b y  the  S u b l e m m a  I .  Since ~-C is infinite, v m a y  be chosen 
disjoint  f rom the  b o u n d a r y  circles of  M ' ,  so ~ proves  S u b l e m m a  I I .  

The  p roof  t h a t  ~ : R  ~ • M - ~ M  has a fixed point  will be given b y  a 
second induct ion,  now on the  genus g of  the  manifo ld  M .  To  s t a r t  the  induction, 
we p rove  this for  a mani fo ld  of  genus 0. Consider, in first place, the  case M ~ D 
wo p rove  this  for a manifo ld  of  genus 0. Consider, in first place, the  case 
M ~ D ~ 2-disc. Assuming  t h a t  ~ : R ~ •  D - ~ D  does not  have  a fixed 
poin t  leads us to the  conclusion of  S u b l e m m a  I I  and  this is obvious ly  contra- 
d ic tory  when  M is a disc. Nex t ,  t ake  the  case M ~ S 2 ~ 2-sphere. Given 

: R  ~ • S 2 - ~ S  2, choose one of  the  circles ~ c S 2 given b y  S u b l e m m a I .  
There  is a disc D c S ~, bounded  b y  # .  D is inva r i an t  under  ~.  B y  the  pre- 
vious case, ~ has  a fixed point  in D ,  hence in S 2. The  case of  manifolds  of  genus 
zero is comple ted  b y  a th i rd  induct ion,  this t ime  on the  n u m b e r  b of  its bound- 
a ry  circles. W e  have  es tabl ished i t  for b ~ 0 (sphere) and  b : 1 (disc). I t  is 
false for b ~ 2 (cylinder), when  z ( M )  : 0, anyway ,  so we s t a r t  this 
induct ion  wi th  b ~ 3. Our  manifold  M is then  a sphere  wi th  3 holes or, as we 
prefer  to  t h ink  of it, a disc wi th  2 inner holes. S u b l e m m a  I I  provides  us with 
a closed 1-dimensional  orbi t  of  ~ which, in this case, has to  bound  a disc in M. 
Such disc is ~ - inva r i an t  and  thus  contains  a fixed point .  N o w  suppose  t h a t  M 
has  b > 3 b o u n d a r y  curves  and  again  t ake  a closed 1-dimensional  ~-orbi t  v 
g iven  b y  S u b l e m m a  I I .  Considered as a p lan  JORDA~ curve,  ~ contains b' 
b o u n d a r y  circles of  M in i ts  inter ior  and  b" in its exterior ,  wi th  b : b' Jr b" 
and  b ' ,  b" ~ 2. Therefore ,  cu t t ing  M along ~, wo ob ta in  2 compac t  2-mani- 
folds of  genus zero, b o t h  wi th  less b o u n d a r y  curves  t h a n  _M, bo th  ~- invariant  
and  none  of t h e m  a cylinder.  The  induct ion  hypothes is  (on b) provides  a fixed 

point .  This concludes the  case g ~ 0. 
W e  re tu rn  now to  the  induct ion on the  genus of  M .  Le t  g > 0, suppose the 
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assertion proved for manifolds of  genus < g and pick a curve v, provided b y  
Sublemma II .  Cut M along g. We ei ther  obtain a manifold of  lower genus and 
same EVLER characterist ic  as M or a pair  of manifolds, bo th  with lower genus 
and non-zero EVLER characterist ics,  adding up to t h a t  of M .  In  ei ther  case, 
the theorem is proved.  

APPENDI X 

The affine group of the line acts without fixed points on a disc 

The affine group of  the real line is the  set G of  all maps of the  form 
x -> a x -~ b, a > 0, of R onto  itself, wi th  the  group s t ruc ture  given by  com- 
position of  maps. Abstract ly ,  G is the set of  all pairs (a, b) of  real numbers ,  
such t ha t  a > 0, and the operat ion in G is defined by  (a, b), (c, d ) - ~  
= (ac, ad -~ b). G has a na tura l  topology,  which makes it  homeomorphic  
with the open r ight  half  plane, so i t  is a s imply-connected 2-dimensional LIE 
group. I t s  LIE algebra has a basis {e 1, e2} for which the only non-zero bracket  
product is [el, e2] ---- e~. In  order  to obta in  an act ion of  G on a compact  
manifold M ,  it  suffices then  to give a pair  of vec tor  fields X ,  Y on M ,  such 
that [X,  Y ] ~ X .  

In order to  define such vector  fields X ,  Y on the  uni t  disc 

D = {(x, y)~R2;  x 2 ~ y2 ~ 1}, 

we star t  with the fields A ,  B on the  plane R 2, which are given b y  A (x, y) 
= (0, 1) and B ( x ,  y) ~- (x,  y) .  Clearly [A, B] --~ A .  We shall t hen  define 
a diffeomorphism h : R 2 -~ int  D ,  of  the  plane onto  the  interior of  D .  This 
yields two vector  fields X z h ,  (A) and Y ~- h .  (B) on int  D.  Finally,  we 
show tha t  X and Y m a y  be cont inuously  ex tended  to the  boundary  S 1 ~ OD, 
in such a way t ha t  X ~ 0  and Y i s  the  uni t  vec tor  t angen t  to  S 1. Then  
[X, Y] ~ X all over  D and  nowhere X and Y vanish simultaneously.  There-  
fore, the  action of G on D defined by  X and  Y has no fixed points. 

The diffeomorphism h : R 2 -~ int  D is given b y  the  formula  below, in which 
we identify each (x, y) E R 2 with the  complex number  z ~- x ~ i y  : 

z 
h ( z ) =  (1 ~- ]z12) 1/'2 exp [ i / ( [z[ )] ,  

where / : R -~ R is a differentiable funct ion  such t h a t  / (t) -~ 0 for t ~ 1 and 
/(t) = log t for t / >  2. The  geometr ical  meaning of  h is be t t e r  shown b y  its 
expression in polar coordinates:  

h(oe 'e) ----- O(1 ~- 02) -112 exp [i~ + i / (Q)] ,  h(0) = 0 .  
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After  computa t ion ,  we  arrive at the  fol lowing express ions  for X -~ h,(A) 
and Y ----- h .  (B) in the  interior of  the  disc D : 

Y (z) = z (1  - - [  z [3) + i z  , 

X ( h ( z ) )  = h(z )  + I z l  ~ l + l z l  ~ ' z =  x + i y .  

W e  see then  that  X and Y m a y  be ex tended  to  the  closed dise D, in such a 
w a y  that  X ( w ) = O  and Y ( w ) = i w  for every  w ~ S  1. This is clear for Y. 
As for X ,  just  not ice  that  if  h (z) -+ % �9 S 1, then  z --> oo so, in the  expression 
of  X,  the  first factor is bounded,  whereas  each s u m m a n d  in the  second factor 
tends  to  zero.  

As  a corollary of  the  preceding construct ion,  we  obta in  an act ion of  G on the 
sphere S ~ w i t h o u t  fixed points .  Jus t  glue t w o  copies of  D along the  boundary 
and let  G act  on each disc as before.  
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